-
Notifications
You must be signed in to change notification settings - Fork 51
NI RFmx SpecAn Marker Functions
- RFmxSpecAn_MarkerCfgNumberOfMarkers
- RFmxSpecAn_MarkerCfgType
- RFmxSpecAn_MarkerCfgReferenceMarker
- RFmxSpecAn_MarkerCfgXLocation
- RFmxSpecAn_MarkerCfgThreshold
- RFmxSpecAn_MarkerCfgTrace
- RFmxSpecAn_MarkerCfgPeakExcursion
- RFmxSpecAn_MarkerPeakSearch
- RFmxSpecAn_MarkerNextPeak
- RFmxSpecAn_MarkerFetchXY
int32 __stdcall RFmxSpecAn_MarkerCfgNumberOfMarkers (niRFmxInstrHandle instrumentHandle, char selectorString[], int32 numberOfMarkers);
Configures the number of markers.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Identifies the RFmx session. You can obtain this parameter from the RFmxSpecAn_Initialize) function. |
selectorString | char[] | Comprises the signal name. If you do not specify the signal name, the default signal instance is used. Example: "" "signal::sig1" You can use the RFmxSpecAn_BuildSignalString) function to build the selector string). |
numberOfMarkers | int32 | Specifies the number of markers. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxSpecAn_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxSpecAn_MarkerCfgType (niRFmxInstrHandle instrumentHandle, char selectorString[], int32 markerType);
Configures the marker type.
Use "marker<n>" as the selector string to configure this function.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Identifies the RFmx session. You can obtain this parameter from the RFmxSpecAn_Initialize) function. |
selectorString | char[] | Comprises the signal name and marker number. If you do not specify the signal name, the default signal instance is used. Example: "marker0" "signal::sig1/marker0" You can use the RFmxSpecAn_BuildMarkerString2 )function to build the selector string). |
markerType | int32 | Specifies whether the marker is disabled (Off) or is enabled (On) either as a normal marker or a delta marker. |
RFMXSPECAN_VAL_MARKER_MARKER_TYPE_OFF (0) | The marker is disabled. |
---|---|
RFMXSPECAN_VAL_MARKER_MARKER_TYPE_NORMAL (1) | The marker is enabled as a normal marker. |
RFMXSPECAN_VAL_MARKER_MARKER_TYPE_DELTA (3) | The marker is enabled as a delta marker. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxSpecAn_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxSpecAn_MarkerCfgReferenceMarker (niRFmxInstrHandle instrumentHandle, char selectorString[], int32 referenceMarker);
Configures the reference marker to a delta marker.
Use "marker<n>" as the selector string to configure this function.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Identifies the RFmx session. You can obtain this parameter from the RFmxSpecAn_Initialize) function. |
selectorString | char[] | Comprises the signal name and marker number. If you do not specify the signal name, the default signal instance is used. Example: "marker0" "signal::sig1/marker0" You can use the RFmxSpecAn_BuildMarkerString2 )function to build the selector string). |
referenceMarker | int32 | Specifies the marker to be used as reference marker when you set the RFMXSPECAN_ATTR_MARKER_TYPE attribute to RFMXSPECAN_VAL_MARKER_MARKER_TYPE_DELTA. This parameter is not used when you set the RFMXSPECAN_ATTR_MARKER_TYPE attribute to RFMXSPECAN_VAL_MARKER_MARKER_TYPE_NORMAL. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxSpecAn_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxSpecAn_MarkerCfgXLocation (niRFmxInstrHandle instrumentHandle, char selectorString[], float64 markerXLocation);
Configures the X location of the marker. Ensure that you configure the reference marker X location or perform peak search on the reference marker before configuring the X location for the Delta marker.
Use "marker<n>" as the selector string to configure this function.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Identifies the RFmx session. You can obtain this parameter from the RFmxSpecAn_Initialize) function. |
selectorString | char[] | Comprises the signal name and marker number. If you do not specify the signal name, the default signal instance is used. Example: "marker0" "signal::sig1/marker0" You can use the RFmxSpecAn_BuildMarkerString2 )function to build the selector string). |
markerXLocation | float64 | Specifies the X location of the marker on the trace when you set the marker type to Normal. The X location is relative to the value of the reference marker when you set the marker type to Delta. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxSpecAn_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxSpecAn_MarkerCfgThreshold (niRFmxInstrHandle instrumentHandle, char selectorString[], int32 thresholdEnabled, float64 threshold);
Configures the threshold to use for peak search.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Identifies the RFmx session. You can obtain this parameter from the RFmxSpecAn_Initialize) function. |
selectorString | char[] | Comprises the signal name. If you do not specify the signal name, the default signal instance is used. Example: "" "signal::sig1" You can use the RFmxSpecAn_BuildSignalString) function to build the selector string). |
thresholdEnabled | int32 | Specifies whether to enable the threshold for the trace while finding the peaks. |
RFMXSPECAN_VAL_MARKER_THRESHOLD_ENABLED_FALSE (0) | Disables the threshold for the trace while finding the peaks. |
---|---|
RFMXSPECAN_VAL_MARKER_THRESHOLD_ENABLED_TRUE (1) | Enables the threshold for the trace while finding the peaks. |
threshold | float64 | Specifies the threshold for finding the peaks on the trace. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxSpecAn_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxSpecAn_MarkerCfgTrace (niRFmxInstrHandle instrumentHandle, char selectorString[], int32 trace);
Configures the measurement trace to be used by the marker.
Use "marker<n>" as the selector string to configure this function.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Identifies the RFmx session. You can obtain this parameter from the RFmxSpecAn_Initialize) function. |
selectorString | char[] | Comprises the signal name and marker number. If you do not specify the signal name, the default signal instance is used. Example: "marker0" "signal::sig1/marker0" You can use the RFmxSpecAn_BuildMarkerString2 )function to build the selector string). |
trace | int32 | Specifies the trace. |
RFMXSPECAN_VAL_MARKER_TRACE_ACP_SPECTRUM (0) | The marker uses the ACP spectrum trace. |
---|---|
RFMXSPECAN_VAL_MARKER_TRACE_CCDF_GAUSSIAN_PROBABILITIES_TRACE (1) | The marker uses the CCDF Gaussian probabilities trace. |
RFMXSPECAN_VAL_MARKER_TRACE_CCDF_PROBABILITIES_TRACE (2) | The marker uses the CCDF probabilities trace. |
RFMXSPECAN_VAL_MARKER_TRACE_CHP_SPECTRUM (3) | The marker uses the CHP spectrum trace. |
RFMXSPECAN_VAL_MARKER_TRACE_FCNT_POWER_TRACE (4) | The marker uses the FCnt power trace. |
RFMXSPECAN_VAL_MARKER_TRACE_OBW_SPECTRUM (5) | The marker uses the OBW spectrum trace. |
RFMXSPECAN_VAL_MARKER_TRACE_SEM_SPECTRUM (6) | The marker uses the SEM spectrum trace. |
RFMXSPECAN_VAL_MARKER_TRACE_SPECTRUM (7) | The marker uses the Spectrum trace. |
RFMXSPECAN_VAL_MARKER_TRACE_TXP_POWER_TRACE (8) | The marker uses the TXP power trace. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxSpecAn_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxSpecAn_MarkerCfgPeakExcursion (niRFmxInstrHandle instrumentHandle, char selectorString[], int32 peakExcursionEnabled, float64 peakExcursion);
Configures the peak excursion.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Identifies the RFmx session. You can obtain this parameter from the RFmxSpecAn_Initialize) function. |
selectorString | char[] | Comprises the signal name. If you do not specify the signal name, the default signal instance is used. Example: "" "signal::sig1" You can use the RFmxSpecAn_BuildSignalString) function to build the selector string). |
peakExcursionEnabled | int32 | Specifies whether to enable the peak excursion check for the trace while finding the peaks. |
RFMXSPECAN_VAL_MARKER_PEAK_EXCURSION_ENABLED_FALSE (0) | Disables the peak excursion check for the trace while finding the peaks. |
---|---|
RFMXSPECAN_VAL_MARKER_PEAK_EXCURSION_ENABLED_TRUE (1) | Enables the peak excursion check for the trace while finding the peaks. |
peakExcursion | float64 | Specifies the peak excursion value for finding the peaks on trace when you set the peakExcursionEnabled parameter to RFMXSPECAN_VAL_MARKER_PEAK_EXCURSION_ENABLED_TRUE. The signal should rise and fall by at least the peak excursion value, above the threshold, to be considered as a peak. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxSpecAn_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxSpecAn_MarkerPeakSearch (niRFmxInstrHandle instrumentHandle, char selectorString[], int32 *numberOfPeaks);
Moves the marker to the highest peak above the threshold on the configured trace.
Use "marker<n>" as the selector string to read results from this function.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Identifies the RFmx session. You can obtain this parameter from the RFmxSpecAn_Initialize) function. |
selectorString | char[] | Comprises the signal name, result name, and marker number. If you do not specify the signal name, the default signal instance is used. Example: "marker0" "signal::sig1/marker0" "result::r1/marker0" "signal::sig1/result::r1/marker0" You can use the RFmxSpecAn_BuildMarkerString2 )function to build the selector string). |
Output | ||
Name | Type | Description |
numberOfPeaks | int32* | Returns the total number of peaks above the threshold, when you enable the marker threshold. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxSpecAn_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxSpecAn_MarkerNextPeak (niRFmxInstrHandle instrumentHandle, char selectorString[], int32 nextPeak, int32 *nextPeakFound);
Moves the marker to the next highest or next left or next right peak above the threshold on the configured trace.
Use "marker<n>" as the selector string to read results from this function.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Identifies the RFmx session. You can obtain this parameter from the RFmxSpecAn_Initialize) function. |
selectorString | char[] | Comprises the signal name, result name, and marker number. If you do not specify the signal name, the default signal instance is used. Example: "marker0" "signal::sig1/marker0" "result::r1/marker0" "signal::sig1/result::r1/marker0" You can use the RFmxSpecAn_BuildMarkerString2 )function to build the selector string). |
nextPeak | int32 | Specifies the next peak on the trace. |
RFMXSPECAN_VAL_MARKER_NEXT_PEAK_NEXT_HIGHEST (0) | Moves the marker to the next highest peak above the threshold on the configured trace. |
---|---|
RFMXSPECAN_VAL_MARKER_NEXT_PEAK_NEXT_LEFT (1) | Moves the marker to the next peak to the left of the configured trace. |
RFMXSPECAN_VAL_MARKER_NEXT_PEAK_NEXT_RIGHT (2) | Moves the marker to the next peak to the right of the configured trace. |
Output | ||
Name | Type | Description |
nextPeakFound | int32* | Indicates whether the function has found the next peak on the trace. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxSpecAn_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxSpecAn_MarkerFetchXY (niRFmxInstrHandle instrumentHandle, char selectorString[], float64* markerXLocation, float64* markerYLocation);
Returns the X and Y locations of the marker.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Identifies the RFmx session. You can obtain this parameter from the RFmxSpecAn_Initialize) function. |
selectorString | char[] | Comprises the signal name, result name, and marker number. If you do not specify the signal name, the default signal instance is used. Example: "marker0" "signal::sig1/marker0" "result::r1/marker0" "signal::sig1/result::r1/marker0" You can use the RFmxSpecAn_BuildMarkerString2 )function to build the selector string). |
Output | ||
Name | Type | Description |
markerXLocation | float64* | Returns the marker X location. |
markerYLocation | float64* | Returns the marker Y location. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxSpecAn_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
Creating and Setting Up a gRPC Server
Session Utilities API Reference
gRPC API Differences From C API
Sharing Driver Sessions Between Clients
C API Docs
NI-DAQmx
- gRPC API Differences From C API
- Task Configuration And Control
- Channel Configuration And Creation
- Timing
- Triggering
- Read Functions
- Write Functions
- Export Hardware Signals
- Scale Configuration
- Internal Buffer Configuration
- Advanced Functions
- System Configuration
- Error Handling
- Buffer Attributes
- Calibration Info Attributes
- Channel Attributes
- Device Attributes
- Export Signal Attributes
- Persisted Channel Attributes
- Persisted Scale Attributes
- Persisted Task Attributes
- Physical Channel Attributes
- Read Attributes
- Scale Attributes
- System Attributes
- Task Attributes
- Timing Attributes
- Trigger Attributes
- Watchdog Attributes
- Write Attributes
NI-DCPOWER
- Setup Functions
- Configure Functions
- Measurement Functions
- Control Functions
- Trigger And Event
- Attribute Functions
- Query Functions
- Calibration Functions
- Utility Functions
- Supported Device
- Source Attributes
- Transient Attributes
- Voltage Attributes
- Current Attributes
- Pulse Voltage Attributes
- Pulse Current Attributes
- Cutoff Attributes
- Measurement Attributes
- Trigger Attributes Functions
- Event Attributes
- Advanced Attributes
- Inherent Ivi Attributes
- Supported Device Attributes
NI-DIGITAL PATTERN DRIVER
- Init And Close Functions
- Session Locking Functions
- Utility Functions
- Error Handling Functions
- Calibration Functions
- Attributes Functions
- Pin Map Functions
- Low Level Functions
- Low Level Action Functions
- Pin Control Functions
- Static IO Functions
- Clock Generator Functions
- Levels And Timing Functions
- TDR Functions
- PPMU Configuration Functions
- DC Voltage Functions
- DC Current Functions
- PPMU Action Functions
- Pattern Configuration Functions
- Pattern Action Functions
- History Ram Functions
- Source Memory Functions
- Capture Memory Functions
- Triggers And Events Functions
- Conditional Jump Trigger Functions
- Sequencer Flag Functions
- Sequencer Register Functions
- Match Fail Combination Functions
- Pattern Results Functions
- Sort Results Functions
- Frequency Measurement Functions
- IVI Inherent Attributes
- Specific Driver Information Attributes, Read Only
- Driver Setup Information Attributes
- Device Attributes
- Pin Control Attributes
- Level Configuration Attributes
- Trigger Configuration Attributes
- PPMU Attributes
- Patterns Attributes
- Pattern Opcode Event Attributes
- Timing Offset Attributes
- Keep Alive Attributes
- Frequency Measurement Attributes
- Clock Generator Attributes
- History RAM
- Synchronization Attributes
- TDR Endpoint Termination Attributes
NI-FGEN
- Setup Functions
- Configuration Functions
- Standard Output Functions
- Arbitrary Waveform Output Functions
- Arbitrary Sequence Output Functions
- Incremental Waveform Write Functions
- Configure Clock Functions
- Trigger And Syncronizations Functions
- 5404 Routing Functions
- Script Output Functions
- Configure Onboard Signal Processing Functions
- Configure Peer To Peer Functions
- Attribute Functions
- Waveform Control Functions
- Error Functions
- Output Attributes
- Arbitrary Waveform Attributes
- Data Transfer Attributes
- Onboard Signal Processing Attributes
- Peer To Peer Attributes
- Standard Function Attributes
- Clock Attributes
- Event Attributes
- Triggering Attributes
- Instrument Specific Attributes
- Inherent IVI Attributes
- 5401 5411 5431
NI-RFmx Bluetooth
- gRPC API Differences From C API
- General Functions
- Configuration Functions
- Set And Get Attribute Functions
- Fetch Results Functions
- Utility Functions
- Build String Functions
- Advanced Functions
- General Attributes
- Trigger Attributes
- Packet Attributes
- Auto Detect Signal Attributes
- Modacc Attributes
- ACP Attributes
- Twenty dB Attributes
- Frequency Range Attributes
- TXP Attributes
- Advanced Attributes
NI-RFmx NR
- gRPC API Differences From C API
- General Functions
- Configuration Functions
- Set And Get Attributes Functions
- Fetch Results Functions
- Utility Functions
- Build String Functions
- Advanced Functions
- General Attributes
- Trigger Attributes
- Signal Detection Attributes
- Component Carrier Attributes
- List Attributes
- Modacc Attributes
- ACP Attributes
- CHP Attributes
- OBW Attributes
- SEM Attributes
- TXP Attributes
- Pvt Attributes
- Advanced Attributes
NI-RFmx LTE
- gRPC API Differences From C API
- General Functions
- Configuration Functions
- Ch Configuration Functions
- NB IoT Configuration Functions
- ModAcc Configuration Functions
- ACP Configuration Functions
- CHP Configuration Functions
- OBW Configuration Functions
- SEM Configuration Functions
- PVT Configuration Functions
- SlotPhase Configuration Functions
- SlotPower Configuration Functions
- Set And Get Attribute Functions
- ModAcc Fetch Functions
- ACP Fetch Functions
- CHP Fetch Functions
- OBW Fetch Functions
- SEM Fetch Functions
- PVT Fetch Functions
- SlotPhase Fetch Functions
- SlotPower Fetch Functions
- Utility Functions
- Build String Functions
- Advanced Functions
- General Attributes
- Trigger Attributes
- Component Carrier Attributes
- ModAcc Attributes
- ACP Attributes
- CHP Attributes
- OBW Attributes
- SEM Attributes
- PVT Attributes
- SlotPhase Attributes
- SlotPower Attributes
- Advanced Attributes
NI-RFmx SpecAn
- gRPC API Differences From C API
- General Functions
- Configuration Functions
- Set And Get Attribute Functions
- Read Functions
- Fetch Functions
- Utility Functions
- Marker Functions
- Build String Functions
- Advanced Functions
- General Attributes
- Trigger Attributes
- ACP Attributes
- Cdf Attributes
- CHP Attributes
- Fcnt Attributes
- Harm Attributes
- OBW Attributes
- SEM Attributes
- Spectrum Attributes
- Spur Attributes
- TXP Attributes
- AMPM Attributes
- Dpd Attributes
- IQ Attributes
- IM Attributes
- NF Attributes
- Phasenoise Attributes
- PAVT Attributes
- Advanced Attributes
NI-RFmx WLAN
- gRPC API Differences From C API
- General Functions
- Configuration Functions
- Set And Get Attribute Functions
- Fetch DSSS ModAcc Functions
- Fetch OFDM ModAcc Functions
- Fetch SEM Functions
- Fetch TXP Functions
- Fetch PowerRamp Functions
- Utility Functions
- Build String Functions
- Advanced Functions
- General Attributes
- Trigger Attributes
- OFDM Attributes
- Auto Detect Signal Attributes
- DSSS ModAcc Attributes
- OFDM ModAcc Attributes
- SEM Attributes
- TXP Attributes
- PowerRamp Attributes
- Advanced Attributes
NI-RFSA
- General Functions
- Configuration Functions
- Acquisition Functions
- Utility Functions
- Calibration Functions
- General Attributes
- Vertical Attributes
- Signal Path Attributes
- Acquisition Attributes
- Acquisition Attributes
- Triggers Attributes
- Events Attributes
- Device Characteristics Attributes
- Peer To Peer Streaming Attributes
- Configuration List Attributes
- Inherent IVI Properties Attributes
- De-embedding Attributes
- Self Calibration Attributes
- Factory Calibration Attributes
- External Alignment Attributes
- Device Specific Attributes
NI-RFSG
- General Functions
- Generation Configuration
- Utility Functions
- Calibration Functions
- Arb Attributes
- Clock Attributes
- Configuration List Attributes
- De-embedding Attributes
- Device Characteristics Attributes
- Device Specific Attributes
- Events Attributes
- External Calibration Attributes
- Inherent IVI Attributes Attributes
- IQ Impairment Attributes
- Load Configurations Attributes
- Modulation Attributes
- Obsolete Attributes
- Peer To Peer Attributes
- RF Attributes
- Self Calibration Attributes
- Triggers Attributes
NI-SCOPE
- Setup Functions
- Configure Functions
- Attribute Functions
- Acquisition Functions
- Measurement Functions
- Calibrate Functions
- Utility Funcitons
- Error Handling Functions
- IVI Compliance Or Obsolete Functions
- Vertical Attributes
- Horizontal Attributes
- Trigger Attributes
- Clocking Attributes
- Synchronization Attributes
- Acquisition Attributes
- Waveform Measurements Attributes
- Onboard Signal Processing Attributes
- Peer To Peer Streaming Attributes
- Device Attributes
- IVI Or Obsolete Attributes
- Instrument Capabilities Attributes
- If Digitizer Attributes
NI-XNET
- gRPC API differences from C APIs
- General Functions
- Cluster Properties
- Database Properties
- Device Properties
- ECU Properties
- Frame Properties
- Interface Properties
- LIN Schedule Entry Properties
- LIN Schedule Properties
- PDU Properties
- Session Ethernet Properties
- Session Frame Properties
- Session Interface Properties
- Session Properties
- Session SAE J1939 Properties
- Signal Properties
- Subframe Properties
- System Properties
- IP-Stack Functions
- Socket Options
- Socket Functions