-
Notifications
You must be signed in to change notification settings - Fork 51
NI RFmx SpecAn TXP Configuration Functions
- RFmxSpecAn_TXPCfgMeasurementInterval
- RFmxSpecAn_TXPCfgRBWFilter
- RFmxSpecAn_TXPCfgThreshold
- RFmxSpecAn_TXPCfgAveraging
- RFmxSpecAn_TXPCfgVBWFilter
int32 __stdcall RFmxSpecAn_TXPCfgMeasurementInterval (niRFmxInstrHandle instrumentHandle, char selectorString[], float64 measurementInterval);
Specifies the acquisition time, in seconds, for the transmit power (TXP) measurement.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Identifies the RFmx session. You can obtain this parameter from the RFmxSpecAn_Initialize) function. |
selectorString | char[] | Comprises the signal name. If you do not specify the signal name, the default signal instance is used. Example: "" "signal::sig1" You can use the RFmxSpecAn_BuildSignalString) function to build the selector string). |
measurementInterval | float64 | Specifies the acquisition time, in seconds, for the measurement. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxSpecAn_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxSpecAn_TXPCfgRBWFilter (niRFmxInstrHandle instrumentHandle, char selectorString[], float64 RBW, int32 RBWFilterType, float64 RRCAlpha);
Configures the resolution bandwidth (RBW) filter to measure the power of the signal as seen through this filter.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Identifies the RFmx session. You can obtain this parameter from the RFmxSpecAn_Initialize) function. |
selectorString | char[] | Comprises the signal name. If you do not specify the signal name, the default signal instance is used. Example: "" "signal::sig1" You can use the RFmxSpecAn_BuildSignalString) function to build the selector string). |
RBW | float64 | Specifies the bandwidth, in hertz (Hz), of the RBW filter used to measure the signal. |
RBWFilterType | int32 | Specifies the shape of the digital RBW filter. |
RFMXSPECAN_VAL_TXP_RBW_FILTER_TYPE_NONE (5) | The measurement does not use any RBW filtering. |
---|---|
RFMXSPECAN_VAL_TXP_RBW_FILTER_TYPE_GAUSSIAN (1) | The RBW filter has a Gaussian response. |
RFMXSPECAN_VAL_TXP_RBW_FILTER_TYPE_FLAT (2) | The RBW filter has a flat response. |
RFMXSPECAN_VAL_TXP_RBW_FILTER_TYPE_SYNCH_TUNED_4 (3) | The RBW filter has a response of a 4-pole synchronously-tuned filter. |
RFMXSPECAN_VAL_TXP_RBW_FILTER_TYPE_SYNCH_TUNED_5 (4) | The RBW filter has a response of a 5-pole synchronously-tuned filter. |
RFMXSPECAN_VAL_TXP_RBW_FILTER_TYPE_RRC (6) | The RRC filter with the roll-off specified by RRCAlpha parameter is used as the RBW filter. |
RRCAlpha | float64 | Specifies the roll-off factor for the root-raised-cosine (RRC) filter. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxSpecAn_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxSpecAn_TXPCfgThreshold (niRFmxInstrHandle instrumentHandle, char selectorString[], int32 thresholdEnabled, float64 thresholdLevel, int32 thresholdType);
Configures the threshold level for the samples that need to be considered for the transmit power (TXP) measurement. Enable the threshold when analyzing burst signals or signals with dead time.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Identifies the RFmx session. You can obtain this parameter from the RFmxSpecAn_Initialize) function. |
selectorString | char[] | Comprises the signal name. If you do not specify the signal name, the default signal instance is used. Example: "" "signal::sig1" You can use the RFmxSpecAn_BuildSignalString) function to build the selector string). |
thresholdEnabled | int32 | Specifies whether to enable thresholding of the acquired samples to be used for the measurement. |
RFMXSPECAN_VAL_TXP_THRESHOLD_ENABLED_FALSE (0) | All samples are considered for the measurement. |
---|---|
RFMXSPECAN_VAL_TXP_THRESHOLD_ENABLED_TRUE (1) | The samples above the threshold level specified in the thresholdLevel parameter are considered for the measurement. |
thresholdLevel | float64 | Specifies either the relative or absolute threshold power level based on the value of the thresholdType parameter. |
thresholdType | int32 | Specifies the reference for the power level used for thresholding. |
RFMXSPECAN_VAL_TXP_THRESHOLD_TYPE_RELATIVE (0) | The threshold is relative to the peak power, in dB, of the acquired samples. |
---|---|
RFMXSPECAN_VAL_TXP_THRESHOLD_TYPE_ABSOLUTE (1) | The threshold is the absolute power, in dBm. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxSpecAn_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxSpecAn_TXPCfgAveraging (niRFmxInstrHandle instrumentHandle, char selectorString[], int32 averagingEnabled, int32 averagingCount, int32 averagingType);
Configures averaging for the transmit power (TXP) measurement.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Identifies the RFmx session. You can obtain this parameter from the RFmxSpecAn_Initialize) function. |
selectorString | char[] | Comprises the signal name. If you do not specify the signal name, the default signal instance is used. Example: "" "signal::sig1" You can use the RFmxSpecAn_BuildSignalString) function to build the selector string). |
averagingEnabled | int32 | Specifies whether to enable averaging for the measurement. |
RFMXSPECAN_VAL_TXP_AVERAGING_ENABLED_FALSE (0) | The measurement is performed on a single acquisition. |
---|---|
RFMXSPECAN_VAL_TXP_AVERAGING_ENABLED_TRUE (1) | The measurement uses the averagingCount parameter to calculate the number of acquisitions over which the measurement is averaged. |
averagingCount | int32 | Specifies the number of acquisitions used for averaging when you set the averagingEnabled parameter to RFMXSPECAN_VAL_TXP_AVERAGING_ENABLED_TRUE. |
averagingType | int32 | Specifies the averaging type for averaging the power over multiple acquisitions. The averaged power trace is used for the measurement. Refer to the Averaging section of the Spectrum) topic for more information about averaging types. |
RFMXSPECAN_VAL_TXP_AVERAGING_TYPE_RMS (0) | The power trace is linearly averaged. RMS averaging reduces signal fluctuations but not the noise floor. |
---|---|
RFMXSPECAN_VAL_TXP_AVERAGING_TYPE_LOG (1) | The power trace is averaged in a logarithm scale. |
RFMXSPECAN_VAL_TXP_AVERAGING_TYPE_SCALAR (2) | The square root of the power trace is averaged. |
RFMXSPECAN_VAL_TXP_AVERAGING_TYPE_MAXIMUM (3) | The peak power in the power trace at each sample instance is retained from one acquisition to the next. |
RFMXSPECAN_VAL_TXP_AVERAGING_TYPE_MINIMUM (4) | The least power in the power trace at each sample instance is retained from one acquisition to the next. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxSpecAn_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxSpecAn_TXPCfgVBWFilter (niRFmxInstrHandle instrumentHandle, char selectorString[], int32 VBWAuto, float64 VBW, float64 VBWToRBWRatio);
Configures VBW settings including the VBW mode, video bandwidth (VBW), and the VBW to RBW ratio.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Identifies the RFmx session. You can obtain this parameter from the RFmxSpecAn_Initialize) function. |
selectorString | char[] | Comprises the signal name. If you do not specify the signal name, the default signal instance is used. Example: "" "signal::sig1" You can use the RFmxSpecAn_BuildSignalString) function to build the selector string). |
VBWAuto | int32 | specifies whether the VBW is expressed directly or computed based on VBW to RBW ratio. The default value is True. |
RFMXSPECAN_VAL_TXP_VBW_FILTER_AUTO_BANDWIDTH_FALSE (0) |
Specify the video bandwidth in the VBW parameter. The VBW to RBW Ratio parameter is disregarded in this mode. |
---|---|
RFMXSPECAN_VAL_TXP_VBW_FILTER_AUTO_BANDWIDTH_TRUE (1) |
Specify video bandwidth in terms of the VBW to RBW ratio. The value of the video bandwidth is then computed by using the RFMXSPECAN_ATTR_TXP_VBW_FILTER_VBW_TO_RBW_RATIO attribute and the TXP RBW attribute. The value of the TXP VBW attribute is disregarded in this mode. |
VBW | float64 | specifies the video bandwidth when you set the VBW Auto parameter to False. This value is expressed in Hz. The default value is 30KHz. |
VBWToRBWRatio | float64 | Specifies the VBW to RBW Ratio when you set the VBW Auto parameter to True. The default value is 3. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxSpecAn_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
Creating and Setting Up a gRPC Server
Session Utilities API Reference
gRPC API Differences From C API
Sharing Driver Sessions Between Clients
C API Docs
NI-DAQmx
- gRPC API Differences From C API
- Task Configuration And Control
- Channel Configuration And Creation
- Timing
- Triggering
- Read Functions
- Write Functions
- Export Hardware Signals
- Scale Configuration
- Internal Buffer Configuration
- Advanced Functions
- System Configuration
- Error Handling
- Buffer Attributes
- Calibration Info Attributes
- Channel Attributes
- Device Attributes
- Export Signal Attributes
- Persisted Channel Attributes
- Persisted Scale Attributes
- Persisted Task Attributes
- Physical Channel Attributes
- Read Attributes
- Scale Attributes
- System Attributes
- Task Attributes
- Timing Attributes
- Trigger Attributes
- Watchdog Attributes
- Write Attributes
NI-DCPOWER
- Setup Functions
- Configure Functions
- Measurement Functions
- Control Functions
- Trigger And Event
- Attribute Functions
- Query Functions
- Calibration Functions
- Utility Functions
- Supported Device
- Source Attributes
- Transient Attributes
- Voltage Attributes
- Current Attributes
- Pulse Voltage Attributes
- Pulse Current Attributes
- Cutoff Attributes
- Measurement Attributes
- Trigger Attributes Functions
- Event Attributes
- Advanced Attributes
- Inherent Ivi Attributes
- Supported Device Attributes
NI-DIGITAL PATTERN DRIVER
- Init And Close Functions
- Session Locking Functions
- Utility Functions
- Error Handling Functions
- Calibration Functions
- Attributes Functions
- Pin Map Functions
- Low Level Functions
- Low Level Action Functions
- Pin Control Functions
- Static IO Functions
- Clock Generator Functions
- Levels And Timing Functions
- TDR Functions
- PPMU Configuration Functions
- DC Voltage Functions
- DC Current Functions
- PPMU Action Functions
- Pattern Configuration Functions
- Pattern Action Functions
- History Ram Functions
- Source Memory Functions
- Capture Memory Functions
- Triggers And Events Functions
- Conditional Jump Trigger Functions
- Sequencer Flag Functions
- Sequencer Register Functions
- Match Fail Combination Functions
- Pattern Results Functions
- Sort Results Functions
- Frequency Measurement Functions
- IVI Inherent Attributes
- Specific Driver Information Attributes, Read Only
- Driver Setup Information Attributes
- Device Attributes
- Pin Control Attributes
- Level Configuration Attributes
- Trigger Configuration Attributes
- PPMU Attributes
- Patterns Attributes
- Pattern Opcode Event Attributes
- Timing Offset Attributes
- Keep Alive Attributes
- Frequency Measurement Attributes
- Clock Generator Attributes
- History RAM
- Synchronization Attributes
- TDR Endpoint Termination Attributes
NI-FGEN
- Setup Functions
- Configuration Functions
- Standard Output Functions
- Arbitrary Waveform Output Functions
- Arbitrary Sequence Output Functions
- Incremental Waveform Write Functions
- Configure Clock Functions
- Trigger And Syncronizations Functions
- 5404 Routing Functions
- Script Output Functions
- Configure Onboard Signal Processing Functions
- Configure Peer To Peer Functions
- Attribute Functions
- Waveform Control Functions
- Error Functions
- Output Attributes
- Arbitrary Waveform Attributes
- Data Transfer Attributes
- Onboard Signal Processing Attributes
- Peer To Peer Attributes
- Standard Function Attributes
- Clock Attributes
- Event Attributes
- Triggering Attributes
- Instrument Specific Attributes
- Inherent IVI Attributes
- 5401 5411 5431
NI-RFmx Bluetooth
- gRPC API Differences From C API
- General Functions
- Configuration Functions
- Set And Get Attribute Functions
- Fetch Results Functions
- Utility Functions
- Build String Functions
- Advanced Functions
- General Attributes
- Trigger Attributes
- Packet Attributes
- Auto Detect Signal Attributes
- Modacc Attributes
- ACP Attributes
- Twenty dB Attributes
- Frequency Range Attributes
- TXP Attributes
- Advanced Attributes
NI-RFmx NR
- gRPC API Differences From C API
- General Functions
- Configuration Functions
- Set And Get Attributes Functions
- Fetch Results Functions
- Utility Functions
- Build String Functions
- Advanced Functions
- General Attributes
- Trigger Attributes
- Signal Detection Attributes
- Component Carrier Attributes
- List Attributes
- Modacc Attributes
- ACP Attributes
- CHP Attributes
- OBW Attributes
- SEM Attributes
- TXP Attributes
- Pvt Attributes
- Advanced Attributes
NI-RFmx LTE
- gRPC API Differences From C API
- General Functions
- Configuration Functions
- Ch Configuration Functions
- NB IoT Configuration Functions
- ModAcc Configuration Functions
- ACP Configuration Functions
- CHP Configuration Functions
- OBW Configuration Functions
- SEM Configuration Functions
- PVT Configuration Functions
- SlotPhase Configuration Functions
- SlotPower Configuration Functions
- Set And Get Attribute Functions
- ModAcc Fetch Functions
- ACP Fetch Functions
- CHP Fetch Functions
- OBW Fetch Functions
- SEM Fetch Functions
- PVT Fetch Functions
- SlotPhase Fetch Functions
- SlotPower Fetch Functions
- Utility Functions
- Build String Functions
- Advanced Functions
- General Attributes
- Trigger Attributes
- Component Carrier Attributes
- ModAcc Attributes
- ACP Attributes
- CHP Attributes
- OBW Attributes
- SEM Attributes
- PVT Attributes
- SlotPhase Attributes
- SlotPower Attributes
- Advanced Attributes
NI-RFmx SpecAn
- gRPC API Differences From C API
- General Functions
- Configuration Functions
- Set And Get Attribute Functions
- Read Functions
- Fetch Functions
- Utility Functions
- Marker Functions
- Build String Functions
- Advanced Functions
- General Attributes
- Trigger Attributes
- ACP Attributes
- Cdf Attributes
- CHP Attributes
- Fcnt Attributes
- Harm Attributes
- OBW Attributes
- SEM Attributes
- Spectrum Attributes
- Spur Attributes
- TXP Attributes
- AMPM Attributes
- Dpd Attributes
- IQ Attributes
- IM Attributes
- NF Attributes
- Phasenoise Attributes
- PAVT Attributes
- Advanced Attributes
NI-RFmx WLAN
- gRPC API Differences From C API
- General Functions
- Configuration Functions
- Set And Get Attribute Functions
- Fetch DSSS ModAcc Functions
- Fetch OFDM ModAcc Functions
- Fetch SEM Functions
- Fetch TXP Functions
- Fetch PowerRamp Functions
- Utility Functions
- Build String Functions
- Advanced Functions
- General Attributes
- Trigger Attributes
- OFDM Attributes
- Auto Detect Signal Attributes
- DSSS ModAcc Attributes
- OFDM ModAcc Attributes
- SEM Attributes
- TXP Attributes
- PowerRamp Attributes
- Advanced Attributes
NI-RFSA
- General Functions
- Configuration Functions
- Acquisition Functions
- Utility Functions
- Calibration Functions
- General Attributes
- Vertical Attributes
- Signal Path Attributes
- Acquisition Attributes
- Acquisition Attributes
- Triggers Attributes
- Events Attributes
- Device Characteristics Attributes
- Peer To Peer Streaming Attributes
- Configuration List Attributes
- Inherent IVI Properties Attributes
- De-embedding Attributes
- Self Calibration Attributes
- Factory Calibration Attributes
- External Alignment Attributes
- Device Specific Attributes
NI-RFSG
- General Functions
- Generation Configuration
- Utility Functions
- Calibration Functions
- Arb Attributes
- Clock Attributes
- Configuration List Attributes
- De-embedding Attributes
- Device Characteristics Attributes
- Device Specific Attributes
- Events Attributes
- External Calibration Attributes
- Inherent IVI Attributes Attributes
- IQ Impairment Attributes
- Load Configurations Attributes
- Modulation Attributes
- Obsolete Attributes
- Peer To Peer Attributes
- RF Attributes
- Self Calibration Attributes
- Triggers Attributes
NI-SCOPE
- Setup Functions
- Configure Functions
- Attribute Functions
- Acquisition Functions
- Measurement Functions
- Calibrate Functions
- Utility Funcitons
- Error Handling Functions
- IVI Compliance Or Obsolete Functions
- Vertical Attributes
- Horizontal Attributes
- Trigger Attributes
- Clocking Attributes
- Synchronization Attributes
- Acquisition Attributes
- Waveform Measurements Attributes
- Onboard Signal Processing Attributes
- Peer To Peer Streaming Attributes
- Device Attributes
- IVI Or Obsolete Attributes
- Instrument Capabilities Attributes
- If Digitizer Attributes
NI-XNET
- gRPC API differences from C APIs
- General Functions
- Cluster Properties
- Database Properties
- Device Properties
- ECU Properties
- Frame Properties
- Interface Properties
- LIN Schedule Entry Properties
- LIN Schedule Properties
- PDU Properties
- Session Ethernet Properties
- Session Frame Properties
- Session Interface Properties
- Session Properties
- Session SAE J1939 Properties
- Signal Properties
- Subframe Properties
- System Properties
- IP-Stack Functions
- Socket Options
- Socket Functions