TENxIO
allows users to import 10X pipeline files into known
Bioconductor classes. The package is not comprehensive, there are files
that are not supported. It currently does not support Visium datasets.
It does replace some functionality in DropletUtils
. If you would like
a file format to be supported. Please open an issue at
https://github.com/waldronlab/TENxIO.
Extension | Class | Imported as |
---|---|---|
.h5 | TENxH5 | SingleCellExperiment w/ TENxMatrix |
.mtx / .mtx.gz | TENxMTX | SummarizedExperiment w/ dgCMatrix |
.tar.gz | TENxFileList | SingleCellExperiment w/ dgCMatrix |
peak_annotation.tsv | TENxPeaks | GRanges |
fragments.tsv.gz | TENxFragments | RaggedExperiment |
.tsv / .tsv.gz | TENxTSV | tibble |
We have tested these functions with some datasets from 10x Genomics including those from:
- Single Cell Gene Expression
- Single Cell ATAC
- Single Cell Multiome ATAC + Gene Expression
Note. That extensive testing has not been performed and the codebase may require some adaptation to ensure compatibility with all pipeline outputs.
- Spatial Gene Expression
We are aware of existing functionality in both DropletUtils
and
SpatialExperiment
. We are working with the authors of those packages
to cover the use cases in both those packages and possibly port I/O
functionality into TENxIO
. We are using long tests and the
DropletTestFiles
package to cover example datasets on ExperimentHub
,
if you would like to know more, see the longtests
directory on GitHub.
if (!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")
BiocManager::install("waldronlab/TENxIO")
library(TENxIO)
TENxIO
offers an set of classes that allow users to easily work with
files typically obtained from the 10X Genomics website. Generally, these
are outputs from the Cell Ranger pipeline.
Loading the data into a Bioconductor class is a two step process. First,
the file must be identified by either the user or the TENxFile
function. The appropriate function will be evoked to provide a TENxIO
class representation, e.g., TENxH5
for HDF5 files with an .h5
extension. Secondly, the import
method for that particular file class
will render a common Bioconductor class representation for the user. The
main representations used by the package are SingleCellExperiment
,
SummarizedExperiment
, GRanges
, and RaggedExperiment
.
The versioning schema in the package mostly applies to HDF5 resources
and is loosely based on versions of 10X datasets. For the most part,
version 3 datasets usually contain ranged information at specific
locations in the data file. Version 2 datasets will usually contain a
genes.tsv
file, rather than features.tsv
as in version 3. If the
file version is unknown, the software will attempt to derive the version
from the data where possible.
The TENxFile
class is the catch-all class superclass that allows
transition to subclasses pertinent to specific files. It inherits from
the BiocFile
class and allows for easy dispatching import
methods.
showClass("TENxFile")
#> Class "TENxFile" [package "TENxIO"]
#>
#> Slots:
#>
#> Name: extension colidx rowidx
#> Class: character integer integer
#>
#> Name: remote compressed resource
#> Class: logical logical character_OR_connection
#>
#> Extends: "BiocFile"
#>
#> Known Subclasses: "TENxFragments", "TENxH5", "TENxMTX", "TENxPeaks", "TENxTSV"
TENxFile
can handle resources from ExperimentHub
with careful
inputs. For example, one can import a TENxBrainData
dataset via the
appropriate ExperimentHub
identifier (EH1039
):
hub <- ExperimentHub::ExperimentHub()
#> snapshotDate(): 2023-01-13
hub["EH1039"]
#> ExperimentHub with 1 record
#> # snapshotDate(): 2023-01-13
#> # names(): EH1039
#> # package(): TENxBrainData
#> # $dataprovider: 10X Genomics
#> # $species: Mus musculus
#> # $rdataclass: character
#> # $rdatadateadded: 2017-10-26
#> # $title: Brain scRNA-seq data, 'HDF5-based 10X Genomics' format
#> # $description: Single-cell RNA-seq data for 1.3 million brain cells from E1...
#> # $taxonomyid: 10090
#> # $genome: mm10
#> # $sourcetype: HDF5
#> # $sourceurl: http://cf.10xgenomics.com/samples/cell-exp/1.3.0/1M_neurons/1M...
#> # $sourcesize: NA
#> # $tags: c("SequencingData", "RNASeqData", "ExpressionData",
#> # "SingleCell")
#> # retrieve record with 'object[["EH1039"]]'
Currently, ExperimentHub
resources do not have an extension and it is
best to provide that to the TENxFile
constructor function.
fname <- hub[["EH1039"]]
TENxFile(fname, extension = "h5", group = "mm10", version = "2")
Note. EH1039
is a large ~ 4GB file and files without extension as
those obtained from ExperimentHub
will emit a warning so that the user
is aware that the import operation may fail, esp. if the internal
structure of the file is modified.
TENxIO
mainly supports version 3 and 2 type of H5 files. These are
files with specific groups and names as seen in h5.version.map
, an
internal data.frame
map that guides the import operations.
TENxIO:::h5.version.map
#> Version ID Symbol Type Ranges
#> 1 3 /features/id /features/name /features/feature_type /features/interval
#> 2 2 /genes /gene_names <NA> <NA>
In the case that, there is a file without genomic coordinate
information, the constructor function can take an NA_character_
input
for the ranges
argument.
The TENxH5
constructor function can be used on either version of these
H5 files. In this example, we use a subset of the PBMC granulocyte H5
file obtained from the 10X
website.
h5f <- system.file(
"extdata", "pbmc_granulocyte_ff_bc_ex.h5",
package = "TENxIO", mustWork = TRUE
)
library(rhdf5)
h5ls(h5f)
#> group name otype dclass dim
#> 0 / matrix H5I_GROUP
#> 1 /matrix barcodes H5I_DATASET STRING 10
#> 2 /matrix data H5I_DATASET INTEGER 2
#> 3 /matrix features H5I_GROUP
#> 4 /matrix/features _all_tag_keys H5I_DATASET STRING 2
#> 5 /matrix/features feature_type H5I_DATASET STRING 10
#> 6 /matrix/features genome H5I_DATASET STRING 10
#> 7 /matrix/features id H5I_DATASET STRING 10
#> 8 /matrix/features interval H5I_DATASET STRING 10
#> 9 /matrix/features name H5I_DATASET STRING 10
#> 10 /matrix indices H5I_DATASET INTEGER 2
#> 11 /matrix indptr H5I_DATASET INTEGER 11
#> 12 /matrix shape H5I_DATASET INTEGER 2
Note. The h5ls
function gives an overview of the structure of the
file. It matches version 3 in our version map.
The show method gives an overview of the data components in the file:
con <- TENxH5(h5f)
con
#> TENxH5 object
#> resource: /media/mr148/1D24A0EA4286043C/bioc-devel/TENxIO/extdata/pbmc_granulocyte_ff_bc_ex.h5
#> projection: SingleCellExperiment
#> dim: 10 10
#> rownames: ENSG00000243485 ENSG00000237613 ... ENSG00000286448 ENSG00000236601
#> rowData names(3): ID Symbol Type
#> Type: Gene Expression
#> colnames: AAACAGCCAAATATCC-1 AAACAGCCAGGAACTG-1 ... AAACCGCGTGAGGTAG-1 AAACGCGCATACCCGG-1
We can simply use the import method to convert the file representation
to a Bioconductor class representation, typically a
SingleCellExperiment
.
import(con)
#> class: SingleCellExperiment
#> dim: 10 10
#> metadata(0):
#> assays(1): counts
#> rownames(10): ENSG00000243485 ENSG00000237613 ... ENSG00000286448
#> ENSG00000236601
#> rowData names(3): ID Symbol Type
#> colnames(10): AAACAGCCAAATATCC-1 AAACAGCCAGGAACTG-1 ...
#> AAACCGCGTGAGGTAG-1 AAACGCGCATACCCGG-1
#> colData names(0):
#> reducedDimNames(0):
#> mainExpName: Gene Expression
#> altExpNames(0):
Note. Although the main representation in the package is
SingleCellExperiment
, there could be a need for alternative data class
representations of the data. The projection
field in the TENxH5
show
method is an initial attempt to allow alternative representations.
Matrix Market formats are also supported (.mtx
extension). These are
typically imported as SummarizedExperiment as they usually contain count
data.
mtxf <- system.file(
"extdata", "pbmc_3k_ff_bc_ex.mtx",
package = "TENxIO", mustWork = TRUE
)
con <- TENxMTX(mtxf)
con
#> TENxMTX object
#> resource: /media/mr148/1D24A0EA4286043C/bioc-devel/TENxIO/extdata/pbmc_3k_ff_bc_ex.mtx
The import
method yields a SummarizedExperiment
without colnames or
rownames.
import(con)
#> class: SummarizedExperiment
#> dim: 171 10
#> metadata(0):
#> assays(1): counts
#> rownames: NULL
#> rowData names(0):
#> colnames: NULL
#> colData names(0):
Generally, the 10X website will provide tarballs (with a .tar.gz
extension) which can be imported with the TENxFileList
class. The
tarball can contain components of a gene expression experiment including
the matrix data, row data (aka ‘features’) expressed as Ensembl
identifiers, gene symbols, etc. and barcode information for the columns.
The TENxFileList
class allows importing multiple files within a
tar.gz
archive. The untar
function with the list = TRUE
argument
shows all the file names in the tarball.
fl <- system.file(
"extdata", "pbmc_granulocyte_sorted_3k_ff_bc_ex_matrix.tar.gz",
package = "TENxIO", mustWork = TRUE
)
untar(fl, list = TRUE)
#> [1] "./pbmc_granulocyte_sorted_3k_filtered_feature_bc_matrix/filtered_feature_bc_matrix/"
#> [2] "./pbmc_granulocyte_sorted_3k_filtered_feature_bc_matrix/filtered_feature_bc_matrix/barcodes.tsv.gz"
#> [3] "./pbmc_granulocyte_sorted_3k_filtered_feature_bc_matrix/filtered_feature_bc_matrix/features.tsv.gz"
#> [4] "./pbmc_granulocyte_sorted_3k_filtered_feature_bc_matrix/filtered_feature_bc_matrix/matrix.mtx.gz"
We then use the import
method across all file types to obtain an
integrated Bioconductor representation that is ready for analysis. Files
in TENxFileList
can be represented as a SingleCellExperiment
with
row names and column names.
con <- TENxFileList(fl)
import(con)
#> class: SingleCellExperiment
#> dim: 10 10
#> metadata(0):
#> assays(1): counts
#> rownames: NULL
#> rowData names(3): ID Symbol Type
#> colnames(10): AAACAGCCAAATATCC-1 AAACAGCCAGGAACTG-1 ...
#> AAACCGCGTGAGGTAG-1 AAACGCGCATACCCGG-1
#> colData names(0):
#> reducedDimNames(0):
#> mainExpName: Gene Expression
#> altExpNames(0):
Peak files can be handled with the TENxPeaks
class. These files are
usually named *peak_annotation
files with a .tsv
extension. Peak
files are represented as GRanges
.
pfl <- system.file(
"extdata", "pbmc_granulocyte_sorted_3k_ex_atac_peak_annotation.tsv",
package = "TENxIO", mustWork = TRUE
)
tenxp <- TENxPeaks(pfl)
peak_anno <- import(tenxp)
peak_anno
#> GRanges object with 10 ranges and 3 metadata columns:
#> seqnames ranges strand | gene distance peak_type
#> <Rle> <IRanges> <Rle> | <character> <numeric> <character>
#> [1] chr1 9768-10660 * | MIR1302-2HG -18894 distal
#> [2] chr1 180582-181297 * | AL627309.5 -6721 distal
#> [3] chr1 181404-181887 * | AL627309.5 -7543 distal
#> [4] chr1 191175-192089 * | AL627309.5 -17314 distal
#> [5] chr1 267561-268455 * | AP006222.2 707 distal
#> [6] chr1 270864-271747 * | AP006222.2 4010 distal
#> [7] chr1 273947-274758 * | AP006222.2 7093 distal
#> [8] chr1 585751-586647 * | AC114498.1 -982 promoter
#> [9] chr1 629484-630393 * | AC114498.1 41856 distal
#> [10] chr1 633556-634476 * | AC114498.1 45928 distal
#> -------
#> seqinfo: 1 sequence from an unspecified genome; no seqlengths
Fragment files are quite large and we make use of the Rsamtools
package to import them with the yieldSize
parameter. By default, we
use a yieldSize
of 200.
fr <- system.file(
"extdata", "pbmc_3k_atac_ex_fragments.tsv.gz",
package = "TENxIO", mustWork = TRUE
)
Internally, we use the TabixFile
constructor function to work with
indexed tsv.gz
files.
Note. A warning is emitted whenever a yieldSize
parameter is not
set.
tfr <- TENxFragments(fr)
#> Warning in TENxFragments(fr): Using default 'yieldSize' parameter
tfr
#> TENxFragments object
#> resource: /media/mr148/1D24A0EA4286043C/bioc-devel/TENxIO/extdata/pbmc_3k_atac_ex_fragments.tsv.gz
Because there may be a variable number of fragments per barcode, we use
a RaggedExperiment
representation for this file type.
fra <- import(tfr)
fra
#> class: RaggedExperiment
#> dim: 10 10
#> assays(2): barcode readSupport
#> rownames: NULL
#> colnames(10): AAACCGCGTGAGGTAG-1 AAGCCTCCACACTAAT-1 ...
#> TGATTAGTCTACCTGC-1 TTTAGCAAGGTAGCTT-1
#> colData names(0):
Similar operations to those used with SummarizedExperiment are
supported. For example, the genomic ranges can be displayed via
rowRanges
:
rowRanges(fra)
#> GRanges object with 10 ranges and 0 metadata columns:
#> seqnames ranges strand
#> <Rle> <IRanges> <Rle>
#> [1] chr1 10152-10180 *
#> [2] chr1 10152-10195 *
#> [3] chr1 10080-10333 *
#> [4] chr1 10091-10346 *
#> [5] chr1 10152-10180 *
#> [6] chr1 10152-10202 *
#> [7] chr1 10097-10344 *
#> [8] chr1 10080-10285 *
#> [9] chr1 10090-10560 *
#> [10] chr1 10074-10209 *
#> -------
#> seqinfo: 1 sequence from an unspecified genome; no seqlengths
sessionInfo()
#> R Under development (unstable) (2022-10-24 r83173)
#> Platform: x86_64-pc-linux-gnu (64-bit)
#> Running under: Ubuntu 22.04.1 LTS
#>
#> Matrix products: default
#> BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.10.0
#> LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.10.0
#>
#> locale:
#> [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
#> [3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
#> [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
#> [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
#> [9] LC_ADDRESS=C LC_TELEPHONE=C
#> [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
#>
#> attached base packages:
#> [1] stats4 stats graphics grDevices utils datasets methods
#> [8] base
#>
#> other attached packages:
#> [1] rhdf5_2.43.0 TENxIO_1.1.0
#> [3] SingleCellExperiment_1.21.0 SummarizedExperiment_1.29.1
#> [5] Biobase_2.59.0 GenomicRanges_1.51.4
#> [7] GenomeInfoDb_1.35.12 IRanges_2.33.0
#> [9] S4Vectors_0.37.3 BiocGenerics_0.45.0
#> [11] MatrixGenerics_1.11.0 matrixStats_0.63.0
#>
#> loaded via a namespace (and not attached):
#> [1] tidyselect_1.2.0 dplyr_1.0.10
#> [3] blob_1.2.3 R.utils_2.12.2
#> [5] Biostrings_2.67.0 filelock_1.0.2
#> [7] bitops_1.0-7 RaggedExperiment_1.23.0
#> [9] fastmap_1.1.0 RCurl_1.98-1.9
#> [11] BiocFileCache_2.7.1 promises_1.2.0.1
#> [13] digest_0.6.31 mime_0.12
#> [15] lifecycle_1.0.3 ellipsis_0.3.2
#> [17] KEGGREST_1.39.0 interactiveDisplayBase_1.37.0
#> [19] RSQLite_2.2.20 magrittr_2.0.3
#> [21] compiler_4.3.0 rlang_1.0.6
#> [23] tools_4.3.0 utf8_1.2.2
#> [25] yaml_2.3.6 knitr_1.41
#> [27] bit_4.0.5 curl_5.0.0
#> [29] DelayedArray_0.25.0 BiocParallel_1.33.9
#> [31] HDF5Array_1.27.0 withr_2.5.0
#> [33] purrr_1.0.1 R.oo_1.25.0
#> [35] grid_4.3.0 fansi_1.0.3
#> [37] ExperimentHub_2.7.0 xtable_1.8-4
#> [39] Rhdf5lib_1.21.0 cli_3.6.0
#> [41] crayon_1.5.2 rmarkdown_2.19
#> [43] generics_0.1.3 rstudioapi_0.14
#> [45] httr_1.4.4 tzdb_0.3.0
#> [47] BiocBaseUtils_1.1.0 DBI_1.1.3
#> [49] cachem_1.0.6 stringr_1.5.0
#> [51] zlibbioc_1.45.0 parallel_4.3.0
#> [53] assertthat_0.2.1 AnnotationDbi_1.61.0
#> [55] BiocManager_1.30.19 XVector_0.39.0
#> [57] vctrs_0.5.1 Matrix_1.5-3
#> [59] hms_1.1.2 bit64_4.0.5
#> [61] glue_1.6.2 codetools_0.2-18
#> [63] stringi_1.7.12 BiocVersion_3.17.1
#> [65] later_1.3.0 BiocIO_1.9.2
#> [67] tibble_3.1.8 pillar_1.8.1
#> [69] rhdf5filters_1.11.0 rappdirs_0.3.3
#> [71] htmltools_0.5.4 GenomeInfoDbData_1.2.9
#> [73] R6_2.5.1 dbplyr_2.3.0
#> [75] vroom_1.6.0 evaluate_0.20
#> [77] shiny_1.7.4 lattice_0.20-45
#> [79] readr_2.1.3 AnnotationHub_3.7.0
#> [81] Rsamtools_2.15.1 R.methodsS3_1.8.2
#> [83] png_0.1-8 memoise_2.0.1
#> [85] httpuv_1.6.8 Rcpp_1.0.9
#> [87] xfun_0.36 pkgconfig_2.0.3