-
Notifications
You must be signed in to change notification settings - Fork 29
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
add simple cartpole example; issue is with RL.jl
- Loading branch information
Showing
3 changed files
with
157 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,88 @@ | ||
using ReinforcementLearning | ||
using Flux | ||
using Flux.Losses | ||
|
||
using Random | ||
using Dojo | ||
|
||
function RL.Experiment( | ||
::Val{:JuliaRL}, | ||
::Val{:DDPG}, | ||
::Val{:DojoCartpole}, | ||
::Nothing, | ||
save_dir = nothing, | ||
seed = 42 | ||
) | ||
|
||
rng = MersenneTwister(seed) | ||
inner_env = Dojo.DojoRLEnv("cartpole") | ||
Random.seed!(inner_env, seed) | ||
# TODO | ||
low = -5.0 | ||
high = 5.0 | ||
ns, na = length(state(inner_env)), length(action_space(inner_env)) | ||
@show na | ||
A = Dojo.BoxSpace(na) | ||
env = ActionTransformedEnv( | ||
inner_env; | ||
action_mapping = x -> low .+ (x .+ 1) .* 0.5 .* (high .- low), | ||
action_space_mapping = _ -> A | ||
) | ||
|
||
init = glorot_uniform(rng) | ||
|
||
create_actor() = Chain( | ||
Dense(ns, 30, relu; init = init), | ||
Dense(30, 30, relu; init = init), | ||
Dense(30, na, tanh; init = init), | ||
) | ||
create_critic() = Chain( | ||
Dense(ns + na, 30, relu; init = init), | ||
Dense(30, 30, relu; init = init), | ||
Dense(30, 1; init = init), | ||
) | ||
|
||
agent = Agent( | ||
policy = DDPGPolicy( | ||
behavior_actor = NeuralNetworkApproximator( | ||
model = create_actor(), | ||
optimizer = ADAM(), | ||
), | ||
behavior_critic = NeuralNetworkApproximator( | ||
model = create_critic(), | ||
optimizer = ADAM(), | ||
), | ||
target_actor = NeuralNetworkApproximator( | ||
model = create_actor(), | ||
optimizer = ADAM(), | ||
), | ||
target_critic = NeuralNetworkApproximator( | ||
model = create_critic(), | ||
optimizer = ADAM(), | ||
), | ||
γ = 0.99f0, | ||
ρ = 0.995f0, | ||
na = na, | ||
batch_size = 64, | ||
start_steps = 1000, | ||
start_policy = RandomPolicy(A; rng = rng), | ||
update_after = 1000, | ||
update_freq = 1, | ||
act_limit = 1.0, | ||
act_noise = 0.1, | ||
rng = rng, | ||
), | ||
trajectory = CircularArraySARTTrajectory( | ||
capacity = 10000, | ||
state = Vector{Float32} => (ns,), | ||
action = Float32 => (na, ), | ||
), | ||
) | ||
|
||
stop_condition = StopAfterStep(10_000, is_show_progress=!haskey(ENV, "CI")) | ||
hook = TotalRewardPerEpisode() | ||
Experiment(agent, env, stop_condition, hook, "# Dojo Cartpole with DDPG") | ||
end | ||
|
||
ex = E`JuliaRL_DDPG_DojoCartpole` | ||
run(ex) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,67 @@ | ||
using ReinforcementLearning | ||
using Flux | ||
using Flux.Losses | ||
|
||
using Random | ||
using Dojo | ||
|
||
function RL.Experiment( | ||
::Val{:JuliaRL}, | ||
::Val{:PPO}, | ||
::Val{:DojoCartpole}, | ||
::Nothing, | ||
save_dir = nothing, | ||
seed = 42 | ||
) | ||
rng = MersenneTwister(seed) | ||
N_ENV = 6 | ||
UPDATE_FREQ = 32 | ||
env_vec = [Dojo.DojoRLEnv("cartpole") for i in 1:N_ENV] | ||
for i in 1:N_ENV | ||
Random.seed!(env_vec[i], hash(seed+i)) | ||
end | ||
env = MultiThreadEnv(env_vec) | ||
|
||
ns, na = length(state(env[1])), length(action_space(env[1])) | ||
RLBase.reset!(env; is_force=true) | ||
|
||
agent = Agent( | ||
policy = PPOPolicy( | ||
approximator = ActorCritic( | ||
actor = Chain( | ||
Dense(ns, 256, relu; init = glorot_uniform(rng)), | ||
Dense(256, na; init = glorot_uniform(rng)), | ||
), | ||
critic = Chain( | ||
Dense(ns, 256, relu; init = glorot_uniform(rng)), | ||
Dense(256, 1; init = glorot_uniform(rng)), | ||
), | ||
optimizer = ADAM(1e-3), | ||
), | ||
γ = 0.99f0, | ||
λ = 0.95f0, | ||
clip_range = 0.1f0, | ||
max_grad_norm = 0.5f0, | ||
n_epochs = 4, | ||
n_microbatches = 4, | ||
actor_loss_weight = 1.0f0, | ||
critic_loss_weight = 0.5f0, | ||
entropy_loss_weight = 0.001f0, | ||
update_freq = UPDATE_FREQ, | ||
), | ||
trajectory = PPOTrajectory(; | ||
capacity = UPDATE_FREQ, | ||
state = Matrix{Float32} => (ns, N_ENV), | ||
action = Vector{Int} => (N_ENV,), | ||
action_log_prob = Vector{Float32} => (N_ENV,), | ||
reward = Vector{Float32} => (N_ENV,), | ||
terminal = Vector{Bool} => (N_ENV,), | ||
), | ||
) | ||
stop_condition = StopAfterStep(10_000, is_show_progress=!haskey(ENV, "CI")) | ||
hook = TotalBatchRewardPerEpisode(N_ENV) | ||
Experiment(agent, env, stop_condition, hook, "# PPO with Dojo Cartpole") | ||
end | ||
|
||
ex = E`JuliaRL_PPO_DojoCartpole` | ||
run(ex) |