Skip to content

Commit

Permalink
Merge remote-tracking branch 'gitlab/master'
Browse files Browse the repository at this point in the history
  • Loading branch information
petrlmat committed Oct 25, 2023
2 parents 64a93f7 + cbc468e commit 6be3deb
Show file tree
Hide file tree
Showing 23 changed files with 2,248 additions and 14 deletions.
11 changes: 7 additions & 4 deletions ReadMe.md
Original file line number Diff line number Diff line change
@@ -1,8 +1,11 @@
# OpenVINS
# OpenVINS (fork)

[![ROS 1 Workflow](https://github.com/rpng/open_vins/actions/workflows/build_ros1.yml/badge.svg)](https://github.com/rpng/open_vins/actions/workflows/build_ros1.yml)
[![ROS 2 Workflow](https://github.com/rpng/open_vins/actions/workflows/build_ros2.yml/badge.svg)](https://github.com/rpng/open_vins/actions/workflows/build_ros2.yml)
[![ROS Free Workflow](https://github.com/rpng/open_vins/actions/workflows/build.yml/badge.svg)](https://github.com/rpng/open_vins/actions/workflows/build.yml)
## Changes from the original repository
* using `/UAV_NAME/` namespace for IMU and camera topic names, setting these topic names in launch files
* flipped the published TF tree to be compatible with the [MRS system TF tree](https://ctu-mrs.github.io/docs/system/frames_of_reference.html)
* custom configs and launch files

## Original readme

Welcome to the OpenVINS project!
The OpenVINS project houses some core computer vision code along with a state-of-the art filter-based visual-inertial
Expand Down
126 changes: 126 additions & 0 deletions config/bluefox_imu/estimator_config.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,126 @@
%YAML:1.0 # need to specify the file type at the top!

verbosity: "INFO" # ALL, DEBUG, INFO, WARNING, ERROR, SILENT

use_fej: true # if first-estimate Jacobians should be used (enable for good consistency)
integration: "rk4" # discrete, rk4, analytical (if rk4 or analytical used then analytical covariance propagation is used)
use_stereo: false # if we have more than 1 camera, if we should try to track stereo constraints between pairs
max_cameras: 1 # how many cameras we have 1 = mono, 2 = stereo, >2 = binocular (all mono tracking)

calib_cam_extrinsics: true # if the transform between camera and IMU should be optimized R_ItoC, p_CinI
calib_cam_intrinsics: true # if camera intrinsics should be optimized (focal, center, distortion)
calib_cam_timeoffset: true # if timeoffset between camera and IMU should be optimized
calib_imu_intrinsics: false # if imu intrinsics should be calibrated (rotation and skew-scale matrix)
calib_imu_g_sensitivity: false # if gyroscope gravity sensitivity (Tg) should be calibrated

max_clones: 11 # how many clones in the sliding window
max_slam: 100 # number of features in our state vector
max_slam_in_update: 25 # update can be split into sequential updates of batches, how many in a batch
max_msckf_in_update: 50 # how many MSCKF features to use in the update
dt_slam_delay: 3 # delay before initializing (helps with stability from bad initialization...)

gravity_mag: 9.81 # magnitude of gravity in this location

feat_rep_msckf: "GLOBAL_3D"
feat_rep_slam: "ANCHORED_MSCKF_INVERSE_DEPTH"
feat_rep_aruco: "ANCHORED_MSCKF_INVERSE_DEPTH"
# feat_rep_slam: "ANCHORED_FULL_INVERSE_DEPTH"
# feat_rep_aruco: "ANCHORED_FULL_INVERSE_DEPTH"

# zero velocity update parameters we can use
# we support either IMU-based or disparity detection.
try_zupt: false
zupt_chi2_multipler: 0 # set to 0 for only disp-based
zupt_max_velocity: 0.1
zupt_noise_multiplier: 50
zupt_max_disparity: 1.5 # set to 0 for only imu-based
zupt_only_at_beginning: true

# ==================================================================
# ==================================================================

init_window_time: 2.0 # how many seconds to collect initialization information
# init_window_time: 2.0 # how many seconds to collect initialization information
init_imu_thresh: 0.3 # threshold for variance of the accelerometer to detect a "jerk" in motion
init_max_disparity: 2.0 # max disparity to consider the platform stationary (dependent on resolution)
init_max_features: 75 # how many features to track during initialization (saves on computation)

init_dyn_use: false # if dynamic initialization should be used
init_dyn_mle_opt_calib: false # if we should optimize calibration during intialization (not recommended)
init_dyn_mle_max_iter: 50 # how many iterations the MLE refinement should use (zero to skip the MLE)
init_dyn_mle_max_time: 0.05 # how many seconds the MLE should be completed in
init_dyn_mle_max_threads: 6 # how many threads the MLE should use
init_dyn_num_pose: 6 # number of poses to use within our window time (evenly spaced)
init_dyn_min_deg: 10.0 # orientation change needed to try to init

init_dyn_inflation_ori: 10 # what to inflate the recovered q_GtoI covariance by
init_dyn_inflation_vel: 100 # what to inflate the recovered v_IinG covariance by
init_dyn_inflation_bg: 10 # what to inflate the recovered bias_g covariance by
init_dyn_inflation_ba: 100 # what to inflate the recovered bias_a covariance by
init_dyn_min_rec_cond: 1e-12 # reciprocal condition number thresh for info inversion

init_dyn_bias_g: [ 0.0, 0.0, 0.0 ] # initial gyroscope bias guess
init_dyn_bias_a: [ 0.0, 0.0, 0.0 ] # initial accelerometer bias guess

# ==================================================================
# ==================================================================

record_timing_information: false # if we want to record timing information of the method
record_timing_filepath: "/tmp/traj_timing.txt" # https://docs.openvins.com/eval-timing.html#eval-ov-timing-flame

# if we want to save the simulation state and its diagional covariance
# use this with rosrun ov_eval error_simulation
save_total_state: false
filepath_est: "/tmp/ov_estimate.txt"
filepath_std: "/tmp/ov_estimate_std.txt"
filepath_gt: "/tmp/ov_groundtruth.txt"

# ==================================================================
# ==================================================================

# our front-end feature tracking parameters
# we have a KLT and descriptor based (KLT is better implemented...)
use_klt: true # if true we will use KLT, otherwise use a ORB descriptor + robust matching
num_pts: 400 # number of points (per camera) we will extract and try to track
# num_pts: 200 # number of points (per camera) we will extract and try to track
# fast_threshold: 20 # threshold for fast extraction (warning: lower threshs can be expensive)
fast_threshold: 15 # threshold for fast extraction (warning: lower threshs can be expensive)
grid_x: 5 # extraction sub-grid count for horizontal direction (uniform tracking)
# grid_y: 5 # extraction sub-grid count for vertical direction (uniform tracking)
grid_y: 3 # extraction sub-grid count for vertical direction (uniform tracking)
# min_px_dist: 10 # distance between features (features near each other provide less information)
min_px_dist: 20 # distance between features (features near each other provide less information)
knn_ratio: 0.70 # descriptor knn threshold for the top two descriptor matches
track_frequency: 21.0 # frequency we will perform feature tracking at (in frames per second / hertz)
downsample_cameras: false # will downsample image in half if true
num_opencv_threads: 4 # -1: auto, 0-1: serial, >1: number of threads
histogram_method: "HISTOGRAM" # NONE, HISTOGRAM, CLAHE

# aruco tag tracker for the system
# DICT_6X6_1000 from https://chev.me/arucogen/
use_aruco: false
num_aruco: 1024
downsize_aruco: true

# ==================================================================
# ==================================================================

# camera noises and chi-squared threshold multipliers
up_msckf_sigma_px: 1
up_msckf_chi2_multipler: 1
up_slam_sigma_px: 1
up_slam_chi2_multipler: 1
up_aruco_sigma_px: 1
up_aruco_chi2_multipler: 1

# masks for our images
use_mask: false

# imu and camera spacial-temporal
# imu config should also have the correct noise values
relative_config_imu: "kalibr_imu_chain.yaml"
relative_config_imucam: "kalibr_imucam_chain.yaml"




45 changes: 45 additions & 0 deletions config/bluefox_imu/kalibr_imu_chain.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,45 @@
%YAML:1.0

imu0:
T_i_b:
- [1.0, 0.0, 0.0, 0.0]
- [0.0, 1.0, 0.0, 0.0]
- [0.0, 0.0, 1.0, 0.0]
- [0.0, 0.0, 0.0, 1.0]

accelerometer_noise_density: 2.0000e-3 # [ m / s^2 / sqrt(Hz) ] ( accel "white noise" )
accelerometer_random_walk: 3.0000e-3 # [ m / s^3 / sqrt(Hz) ]. ( accel bias diffusion )
gyroscope_noise_density: 1.6968e-04 # [ rad / s / sqrt(Hz) ] ( gyro "white noise" )
gyroscope_random_walk: 1.9393e-05 # [ rad / s^2 / sqrt(Hz) ] ( gyro bias diffusion )
# rostopic: /uav35/vio_imu/imu_filtered
time_offset: 0.0
update_rate: 1000.0
# three different modes supported:
# "calibrated" (same as "kalibr"), "kalibr", "rpng"
model: "kalibr"
# how to get from Kalibr imu.yaml result file:
# - Tw is imu0:gyroscopes:M:
# - R_IMUtoGYRO: is imu0:gyroscopes:M:
# - Ta is imu0:accelerometers:M:
# - R_IMUtoACC not used by Kalibr
# - Tg is imu0:gyroscopes:A:
Tw:
- [ 1.0, 0.0, 0.0 ]
- [ 0.0, 1.0, 0.0 ]
- [ 0.0, 0.0, 1.0 ]
R_IMUtoGYRO:
- [ 1.0, 0.0, 0.0 ]
- [ 0.0, 1.0, 0.0 ]
- [ 0.0, 0.0, 1.0 ]
Ta:
- [ 1.0, 0.0, 0.0 ]
- [ 0.0, 1.0, 0.0 ]
- [ 0.0, 0.0, 1.0 ]
R_IMUtoACC:
- [ 1.0, 0.0, 0.0 ]
- [ 0.0, 1.0, 0.0 ]
- [ 0.0, 0.0, 1.0 ]
Tg:
- [ 0.0, 0.0, 0.0 ]
- [ 0.0, 0.0, 0.0 ]
- [ 0.0, 0.0, 0.0 ]
15 changes: 15 additions & 0 deletions config/bluefox_imu/kalibr_imucam_chain.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,15 @@
%YAML:1.0

cam0:
T_imu_cam: #rotation from camera to IMU R_CtoI, position of camera in IMU p_CinI
- [1, 0, 0, 0]
- [0, 1, 0, 0]
- [0, 0, 1, 0.007]
- [0.0, 0.0, 0.0, 1.0]
cam_overlaps: [0]
camera_model: pinhole
distortion_coeffs: [-0.007054279635535503,-0.013010999471709818,0.007672805064263297,-0.0034608152598251778]
distortion_model: equidistant
intrinsics: [218.62328342963636,218.84544019573178, 374.186243114997, 203.57046644527676] #fu, fv, cu, cv
resolution: [752, 480]
# rostopic: /mv_25003659/image_raw
126 changes: 126 additions & 0 deletions config/bluefox_imu_simulation/estimator_config.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,126 @@
%YAML:1.0 # need to specify the file type at the top!

verbosity: "INFO" # ALL, DEBUG, INFO, WARNING, ERROR, SILENT

use_fej: true # if first-estimate Jacobians should be used (enable for good consistency)
integration: "rk4" # discrete, rk4, analytical (if rk4 or analytical used then analytical covariance propagation is used)
use_stereo: false # if we have more than 1 camera, if we should try to track stereo constraints between pairs
max_cameras: 1 # how many cameras we have 1 = mono, 2 = stereo, >2 = binocular (all mono tracking)

calib_cam_extrinsics: true # if the transform between camera and IMU should be optimized R_ItoC, p_CinI
calib_cam_intrinsics: true # if camera intrinsics should be optimized (focal, center, distortion)
calib_cam_timeoffset: true # if timeoffset between camera and IMU should be optimized
calib_imu_intrinsics: false # if imu intrinsics should be calibrated (rotation and skew-scale matrix)
calib_imu_g_sensitivity: false # if gyroscope gravity sensitivity (Tg) should be calibrated

max_clones: 11 # how many clones in the sliding window
max_slam: 100 # number of features in our state vector
max_slam_in_update: 25 # update can be split into sequential updates of batches, how many in a batch
max_msckf_in_update: 50 # how many MSCKF features to use in the update
dt_slam_delay: 3 # delay before initializing (helps with stability from bad initialization...)

gravity_mag: 9.81 # magnitude of gravity in this location

feat_rep_msckf: "GLOBAL_3D"
feat_rep_slam: "ANCHORED_MSCKF_INVERSE_DEPTH"
feat_rep_aruco: "ANCHORED_MSCKF_INVERSE_DEPTH"
# feat_rep_slam: "ANCHORED_FULL_INVERSE_DEPTH"
# feat_rep_aruco: "ANCHORED_FULL_INVERSE_DEPTH"

# zero velocity update parameters we can use
# we support either IMU-based or disparity detection.
try_zupt: false
zupt_chi2_multipler: 0 # set to 0 for only disp-based
zupt_max_velocity: 0.1
zupt_noise_multiplier: 50
zupt_max_disparity: 1.5 # set to 0 for only imu-based
zupt_only_at_beginning: true

# ==================================================================
# ==================================================================

init_window_time: 2.0 # how many seconds to collect initialization information
# init_window_time: 2.0 # how many seconds to collect initialization information
init_imu_thresh: 0.05 # threshold for variance of the accelerometer to detect a "jerk" in motion
init_max_disparity: 2.0 # max disparity to consider the platform stationary (dependent on resolution)
init_max_features: 75 # how many features to track during initialization (saves on computation)

init_dyn_use: false # if dynamic initialization should be used
init_dyn_mle_opt_calib: false # if we should optimize calibration during intialization (not recommended)
init_dyn_mle_max_iter: 50 # how many iterations the MLE refinement should use (zero to skip the MLE)
init_dyn_mle_max_time: 0.05 # how many seconds the MLE should be completed in
init_dyn_mle_max_threads: 6 # how many threads the MLE should use
init_dyn_num_pose: 6 # number of poses to use within our window time (evenly spaced)
init_dyn_min_deg: 10.0 # orientation change needed to try to init

init_dyn_inflation_ori: 10 # what to inflate the recovered q_GtoI covariance by
init_dyn_inflation_vel: 100 # what to inflate the recovered v_IinG covariance by
init_dyn_inflation_bg: 10 # what to inflate the recovered bias_g covariance by
init_dyn_inflation_ba: 100 # what to inflate the recovered bias_a covariance by
init_dyn_min_rec_cond: 1e-12 # reciprocal condition number thresh for info inversion

init_dyn_bias_g: [ 0.0, 0.0, 0.0 ] # initial gyroscope bias guess
init_dyn_bias_a: [ 0.0, 0.0, 0.0 ] # initial accelerometer bias guess

# ==================================================================
# ==================================================================

record_timing_information: false # if we want to record timing information of the method
record_timing_filepath: "/tmp/traj_timing.txt" # https://docs.openvins.com/eval-timing.html#eval-ov-timing-flame

# if we want to save the simulation state and its diagional covariance
# use this with rosrun ov_eval error_simulation
save_total_state: false
filepath_est: "/tmp/ov_estimate.txt"
filepath_std: "/tmp/ov_estimate_std.txt"
filepath_gt: "/tmp/ov_groundtruth.txt"

# ==================================================================
# ==================================================================

# our front-end feature tracking parameters
# we have a KLT and descriptor based (KLT is better implemented...)
use_klt: true # if true we will use KLT, otherwise use a ORB descriptor + robust matching
num_pts: 400 # number of points (per camera) we will extract and try to track
# num_pts: 200 # number of points (per camera) we will extract and try to track
# fast_threshold: 20 # threshold for fast extraction (warning: lower threshs can be expensive)
fast_threshold: 15 # threshold for fast extraction (warning: lower threshs can be expensive)
grid_x: 5 # extraction sub-grid count for horizontal direction (uniform tracking)
# grid_y: 5 # extraction sub-grid count for vertical direction (uniform tracking)
grid_y: 3 # extraction sub-grid count for vertical direction (uniform tracking)
# min_px_dist: 10 # distance between features (features near each other provide less information)
min_px_dist: 20 # distance between features (features near each other provide less information)
knn_ratio: 0.70 # descriptor knn threshold for the top two descriptor matches
track_frequency: 21.0 # frequency we will perform feature tracking at (in frames per second / hertz)
downsample_cameras: false # will downsample image in half if true
num_opencv_threads: 4 # -1: auto, 0-1: serial, >1: number of threads
histogram_method: "HISTOGRAM" # NONE, HISTOGRAM, CLAHE

# aruco tag tracker for the system
# DICT_6X6_1000 from https://chev.me/arucogen/
use_aruco: false
num_aruco: 1024
downsize_aruco: true

# ==================================================================
# ==================================================================

# camera noises and chi-squared threshold multipliers
up_msckf_sigma_px: 1
up_msckf_chi2_multipler: 1
up_slam_sigma_px: 1
up_slam_chi2_multipler: 1
up_aruco_sigma_px: 1
up_aruco_chi2_multipler: 1

# masks for our images
use_mask: false

# imu and camera spacial-temporal
# imu config should also have the correct noise values
relative_config_imu: "kalibr_imu_chain.yaml"
relative_config_imucam: "kalibr_imucam_chain.yaml"




45 changes: 45 additions & 0 deletions config/bluefox_imu_simulation/kalibr_imu_chain.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,45 @@
%YAML:1.0

imu0:
T_i_b:
- [1.0, 0.0, 0.0, 0.0]
- [0.0, 1.0, 0.0, 0.0]
- [0.0, 0.0, 1.0, 0.0]
- [0.0, 0.0, 0.0, 1.0]
accelerometer_noise_density: 2.0000e-3 # [ m / s^2 / sqrt(Hz) ] ( accel "white noise" )
accelerometer_random_walk: 3.0000e-3 # [ m / s^3 / sqrt(Hz) ]. ( accel bias diffusion )
gyroscope_noise_density: 1.6968e-04 # [ rad / s / sqrt(Hz) ] ( gyro "white noise" )
gyroscope_random_walk: 1.9393e-05 # [ rad / s^2 / sqrt(Hz) ] ( gyro bias diffusion )
# rostopic: /uav0/vio/imu
time_offset: 0.0
# update_rate: 200.0
update_rate: 125.0
# three different modes supported:
# "calibrated" (same as "kalibr"), "kalibr", "rpng"
model: "kalibr"
# how to get from Kalibr imu.yaml result file:
# - Tw is imu0:gyroscopes:M:
# - R_IMUtoGYRO: is imu0:gyroscopes:M:
# - Ta is imu0:accelerometers:M:
# - R_IMUtoACC not used by Kalibr
# - Tg is imu0:gyroscopes:A:
Tw:
- [ 1.0, 0.0, 0.0 ]
- [ 0.0, 1.0, 0.0 ]
- [ 0.0, 0.0, 1.0 ]
R_IMUtoGYRO:
- [ 1.0, 0.0, 0.0 ]
- [ 0.0, 1.0, 0.0 ]
- [ 0.0, 0.0, 1.0 ]
Ta:
- [ 1.0, 0.0, 0.0 ]
- [ 0.0, 1.0, 0.0 ]
- [ 0.0, 0.0, 1.0 ]
R_IMUtoACC:
- [ 1.0, 0.0, 0.0 ]
- [ 0.0, 1.0, 0.0 ]
- [ 0.0, 0.0, 1.0 ]
Tg:
- [ 0.0, 0.0, 0.0 ]
- [ 0.0, 0.0, 0.0 ]
- [ 0.0, 0.0, 0.0 ]
15 changes: 15 additions & 0 deletions config/bluefox_imu_simulation/kalibr_imucam_chain.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,15 @@
%YAML:1.0

cam0:
T_imu_cam: #rotation from camera to IMU R_CtoI, position of camera in IMU p_CinI
- [1, 0, 0, 0]
- [0, 1, 0, 0]
- [0, 0, 1, 0.000]
- [0.0, 0.0, 0.0, 1.0]
cam_overlaps: [0]
camera_model: pinhole
distortion_coeffs: [0.019265981371039506, 0.0011428473998276235, -0.0003811659324868097, 6.340084698783884e-05]
distortion_model: equidistant
intrinsics: [227.4010064226358,227.35879407313246,375.5302935901654,239.4881944649193] #fu, fv, cu, cv
resolution: [752, 480]
# rostopic: /uav0/vio/camera/image_raw
Loading

0 comments on commit 6be3deb

Please sign in to comment.