Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

LLM Inputs Library - MVP #481

Merged
merged 11 commits into from
Mar 1, 2024
21 changes: 21 additions & 0 deletions src/c++/perf_analyzer/genai-pa/genaipa_exceptions.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,21 @@
# Copyright 2024, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


class GenAiPAException(Exception):
"""
A custom exception specific to the GenAI-PA
"""

pass
13 changes: 13 additions & 0 deletions src/c++/perf_analyzer/genai-pa/llm_inputs/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,13 @@
# Copyright 2024, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
debermudez marked this conversation as resolved.
Show resolved Hide resolved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
278 changes: 278 additions & 0 deletions src/c++/perf_analyzer/genai-pa/llm_inputs/llm_inputs.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,278 @@
# Copyright 2024, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
debermudez marked this conversation as resolved.
Show resolved Hide resolved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import json
from copy import deepcopy
from typing import Dict, List, Optional, Tuple

import requests
from genaipa_exceptions import GenAiPAException
from requests import Response


class LlmInputs:
"""
A library of methods that control the generation of LLM Inputs
"""

OUTPUT_FILENAME = "./llm_inputs.json"

OPEN_ORCA_URL = "https://datasets-server.huggingface.co/rows?dataset=Open-Orca%2FOpenOrca&config=default&split=train"
CNN_DAILYMAIL_URL = "https://datasets-server.huggingface.co/rows?dataset=cnn_dailymail&config=1.0.0&split=train"

DEFAULT_STARTING_INDEX = 0
MINIMUM_STARTING_INDEX = 0

DEFAULT_LENGTH = 100
MINIMUM_LENGTH = 1

EMPTY_JSON_IN_OPENAI_PA_FORMAT = {"data": [{"payload": []}]}

@classmethod
def create_openai_llm_inputs(
cls,
url: str = OPEN_ORCA_URL,
starting_index: int = DEFAULT_STARTING_INDEX,
length: int = DEFAULT_LENGTH,
model_name: str = None,
add_stream: bool = False,
) -> Dict:
"""
Given a URL and indexing parameters, it will write a string of LLM Inputs
(in a JSON dictionary) to a file

Parameters
----------
url:
URL to gather LLM Inputs from
starting_index:
Offset from within the list to start gathering inputs
length:
Number of entries to gather
model_name:
If included adds this model name field to each payload
add_stream:
If true adds a steam field to each payload
"""

LlmInputs._check_for_valid_args(starting_index, length)
configured_url = LlmInputs._create_configured_url(url, starting_index, length)
dataset = LlmInputs._download_dataset(configured_url, starting_index, length)
dataset_json = LlmInputs._convert_dataset_to_json(dataset)
json_in_pa_format = LlmInputs._convert_json_to_pa_format(
dataset_json, model_name, add_stream
)
LlmInputs._write_json_to_file(json_in_pa_format)

return json_in_pa_format

@classmethod
def _check_for_valid_args(cls, starting_index: int, length: int) -> None:
try:
LlmInputs._check_for_valid_starting_index(starting_index)
LlmInputs._check_for_valid_length(length)
except Exception as e:
raise GenAiPAException(e)

@classmethod
def _create_configured_url(cls, url: str, starting_index: int, length: int) -> str:
starting_index_str = str(starting_index)
length_str = str(length)
configured_url = url + f"&offset={starting_index_str}&length={length_str}"

return configured_url

@classmethod
def _download_dataset(cls, configured_url, starting_index, length) -> Response:
dataset = LlmInputs._query_server(configured_url)

return dataset

@classmethod
def _convert_dataset_to_json(cls, dataset: Response) -> Dict:
dataset_json = dataset.json()
try:
LlmInputs._check_for_error_in_json_of_dataset(dataset_json)
except Exception as e:
raise GenAiPAException(e)

return dataset_json

@classmethod
def _convert_json_to_pa_format(
cls, dataset_json: Dict, model_name: str, add_stream: bool
) -> Dict:
system_role_headers, user_role_headers = LlmInputs._determine_json_pa_roles(
dataset_json
)
pa_json = LlmInputs._populate_openai_pa_json(
dataset_json,
system_role_headers,
user_role_headers,
model_name,
add_stream,
)

return pa_json

@classmethod
def _write_json_to_file(cls, json_in_pa_format: Dict):
try:
f = open(LlmInputs.OUTPUT_FILENAME, "w")
f.write(json.dumps(json_in_pa_format, indent=2))
finally:
f.close()

@classmethod
def _determine_json_pa_roles(
cls, dataset_json: Dict
) -> Tuple[List[str], List[str]]:
SYSTEM_ROLE_LIST = ["system_prompt"]
USER_ROLE_LIST = ["question", "article"]

system_role_headers, user_role_headers = [], []
if "features" in dataset_json.keys():
for index, feature in enumerate(dataset_json["features"]):
if feature["name"] in SYSTEM_ROLE_LIST:
system_role_headers.append(feature["name"])
if feature["name"] in USER_ROLE_LIST:
user_role_headers.append(feature["name"])

assert system_role_headers is not None or user_role_headers is not None

return system_role_headers, user_role_headers

@classmethod
def _populate_openai_pa_json(
cls,
dataset_json: Dict,
system_role_headers: List[str],
user_role_headers: List[str],
model_name: str,
add_stream: bool,
) -> Dict:
pa_json = LlmInputs._create_empty_openai_pa_json()

for entry in dataset_json["rows"]:
pa_json["data"][0]["payload"].append({"messages": []})

for header in entry["row"]:
new_message = LlmInputs._create_new_message(
header, system_role_headers, user_role_headers, entry["row"][header]
)

pa_json = LlmInputs._add_new_message_to_json(
pa_json, entry["row_idx"], new_message
)

pa_json = LlmInputs._add_optional_tags_to_json(
pa_json, entry["row_idx"], model_name, add_stream
)

return pa_json

@classmethod
def _create_empty_openai_pa_json(cls) -> Dict:
empty_pa_json = deepcopy(LlmInputs.EMPTY_JSON_IN_OPENAI_PA_FORMAT)

return empty_pa_json

@classmethod
def _create_new_message(
cls,
header: str,
system_role_headers: List[str],
user_role_headers: List[str],
content: str,
) -> Optional[Dict]:
if header in system_role_headers:
new_message = {
"role": "system",
"content": content,
}
elif header in user_role_headers:
new_message = {
"role": "user",
"content": content,
}
else:
new_message = {}
debermudez marked this conversation as resolved.
Show resolved Hide resolved

return new_message

@classmethod
def _add_new_message_to_json(
cls, pa_json: Dict, index: int, new_message: Optional[Dict]
) -> Dict:
if new_message:
debermudez marked this conversation as resolved.
Show resolved Hide resolved
pa_json["data"][0]["payload"][index]["messages"].append(new_message)

return pa_json

@classmethod
def _add_optional_tags_to_json(
cls, pa_json: Dict, index: int, model_name: str, add_stream: bool
) -> Dict:
if model_name:
pa_json["data"][0]["payload"][index]["model"] = model_name
if add_stream:
pa_json["data"][0]["payload"][index]["steam"] = "true"

return pa_json

@classmethod
def _check_for_valid_starting_index(cls, starting_index: int) -> None:
if not isinstance(starting_index, int):
raise GenAiPAException(
f"starting_index: {starting_index} must be an integer."
)

if starting_index < LlmInputs.MINIMUM_STARTING_INDEX:
raise GenAiPAException(
f"starting_index: {starting_index} must be larger than {LlmInputs.MINIMUM_STARTING_INDEX}."
)

@classmethod
def _check_for_valid_length(cls, length: int) -> None:
if not isinstance(length, int):
raise GenAiPAException(f"length: {length} must be an integer.")

if length < LlmInputs.MINIMUM_LENGTH:
debermudez marked this conversation as resolved.
Show resolved Hide resolved
raise GenAiPAException(
f"starting_index: {length} must be larger than {LlmInputs.MINIMUM_LENGTH}."
)

@classmethod
def _query_server(cls, configured_url: str) -> Response:
try:
response = requests.get(configured_url)
except Exception as e:
error_message = LlmInputs._create_error_message(e)
raise GenAiPAException(error_message)

return response

@classmethod
def _create_error_message(cls, exception: Exception) -> str:
url_str = exception.args[0].args[0]
url_start = url_str.find("'")
url_end = url_str.find("'", url_start + 1) + 1
error_message = f"Invalid URL: {url_str[url_start:url_end]}"

return error_message

@classmethod
def _check_for_error_in_json_of_dataset(cls, json_of_dataset: str) -> None:
if "error" in json_of_dataset.keys():
raise GenAiPAException(json_of_dataset["error"])
Loading
Loading