dask-version #1711
dask-version #1711
Build #20241014.3 had test failures
Details
- Failed: 106 (1.08%)
- Passed: 8,317 (84.59%)
- Other: 1,409 (14.33%)
- Total: 9,832
- 5062 of 6026 line covered (84.00%)
Annotations
Check failure on line 19 in Build log
azure-pipelines / scverse.anndata
Build log #L19
Bash exited with code '4'.
Check failure on line 10 in Build log
azure-pipelines / scverse.anndata
Build log #L10
No code coverage results were found to publish.
Check failure on line 19 in Build log
azure-pipelines / scverse.anndata
Build log #L19
Bash exited with code '4'.
Check failure on line 6051 in Build log
azure-pipelines / scverse.anndata
Build log #L6051
Bash exited with code '1'.
Check failure on line 1 in test_concatenate_roundtrip[inner-sparse_dask_array-concat_func0-False]
azure-pipelines / scverse.anndata
test_concatenate_roundtrip[inner-sparse_dask_array-concat_func0-False]
ValueError: zero-dimensional arrays cannot be concatenated
Raw output
join_type = 'inner'
array_type = <function as_sparse_dask_array at 0x7fad43daf280>
concat_func = functools.partial(<function concat at 0x7fad43e0eb80>, merge='unique')
backwards_compat = False
@mark_legacy_concatenate
@pytest.mark.parametrize(
("concat_func", "backwards_compat"),
[
(partial(concat, merge="unique"), False),
(lambda x, **kwargs: x[0].concatenate(x[1:], **kwargs), True),
],
)
def test_concatenate_roundtrip(join_type, array_type, concat_func, backwards_compat):
adata = gen_adata((100, 10), X_type=array_type, **GEN_ADATA_DASK_ARGS)
remaining = adata.obs_names
subsets = []
while len(remaining) > 0:
n = min(len(remaining), np.random.choice(50))
subset_idx = np.random.choice(remaining, n, replace=False)
subsets.append(adata[subset_idx])
remaining = remaining.difference(subset_idx)
result = concat_func(subsets, join=join_type, uns_merge="same", index_unique=None)
# Correcting for known differences
orig, result = fix_known_differences(
adata, result, backwards_compat=backwards_compat
)
> assert_equal(result[orig.obs_names].copy(), orig)
/home/vsts/work/1/s/tests/test_concatenate.py:197:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
/opt/hostedtoolcache/Python/3.9.20/x64/lib/python3.9/functools.py:888: in wrapper
return dispatch(args[0].__class__)(*args, **kw)
/opt/hostedtoolcache/Python/3.9.20/x64/lib/python3.9/site-packages/anndata/tests/helpers.py:764: in assert_adata_equal
assert_equal(
/opt/hostedtoolcache/Python/3.9.20/x64/lib/python3.9/functools.py:888: in wrapper
return dispatch(args[0].__class__)(*args, **kw)
/opt/hostedtoolcache/Python/3.9.20/x64/lib/python3.9/site-packages/anndata/tests/helpers.py:627: in assert_equal_dask_array
assert_equal(b, a.compute(), exact, elem_name)
/opt/hostedtoolcache/Python/3.9.20/x64/lib/python3.9/site-packages/dask/base.py:376: in compute
(result,) = compute(self, traverse=False, **kwargs)
/opt/hostedtoolcache/Python/3.9.20/x64/lib/python3.9/site-packages/dask/base.py:662: in compute
results = schedule(dsk, keys, **kwargs)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
arrs = [<5x5 sparse matrix of type '<class 'numpy.float32'>'
with 12 stored elements in Compressed Sparse Row format>, <5x5 sparse matrix of type '<class 'numpy.float32'>'
with 11 stored elements in Compressed Sparse Row format>]
sorter = array([7, 5, 0, 9, 6, 4, 1, 2, 3, 8]), axis = 0
def concatenate_arrays(arrs, sorter, axis):
> return np.take(np.concatenate(arrs, axis=axis), np.argsort(sorter), axis=axis)
E ValueError: zero-dimensional arrays cannot be concatenated
/opt/hostedtoolcache/Python/3.9.20/x64/lib/python3.9/site-packages/dask/array/_shuffle.py:190: ValueError
Check failure on line 1 in test_concatenate_roundtrip[inner-sparse_dask_array-<lambda>-True]
azure-pipelines / scverse.anndata
test_concatenate_roundtrip[inner-sparse_dask_array-<lambda>-True]
ValueError: zero-dimensional arrays cannot be concatenated
Raw output
join_type = 'inner'
array_type = <function as_sparse_dask_array at 0x7fad43daf280>
concat_func = <function <lambda> at 0x7fad40ed2b80>, backwards_compat = True
@mark_legacy_concatenate
@pytest.mark.parametrize(
("concat_func", "backwards_compat"),
[
(partial(concat, merge="unique"), False),
(lambda x, **kwargs: x[0].concatenate(x[1:], **kwargs), True),
],
)
def test_concatenate_roundtrip(join_type, array_type, concat_func, backwards_compat):
adata = gen_adata((100, 10), X_type=array_type, **GEN_ADATA_DASK_ARGS)
remaining = adata.obs_names
subsets = []
while len(remaining) > 0:
n = min(len(remaining), np.random.choice(50))
subset_idx = np.random.choice(remaining, n, replace=False)
subsets.append(adata[subset_idx])
remaining = remaining.difference(subset_idx)
result = concat_func(subsets, join=join_type, uns_merge="same", index_unique=None)
# Correcting for known differences
orig, result = fix_known_differences(
adata, result, backwards_compat=backwards_compat
)
> assert_equal(result[orig.obs_names].copy(), orig)
/home/vsts/work/1/s/tests/test_concatenate.py:197:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
/opt/hostedtoolcache/Python/3.9.20/x64/lib/python3.9/functools.py:888: in wrapper
return dispatch(args[0].__class__)(*args, **kw)
/opt/hostedtoolcache/Python/3.9.20/x64/lib/python3.9/site-packages/anndata/tests/helpers.py:764: in assert_adata_equal
assert_equal(
/opt/hostedtoolcache/Python/3.9.20/x64/lib/python3.9/functools.py:888: in wrapper
return dispatch(args[0].__class__)(*args, **kw)
/opt/hostedtoolcache/Python/3.9.20/x64/lib/python3.9/site-packages/anndata/tests/helpers.py:627: in assert_equal_dask_array
assert_equal(b, a.compute(), exact, elem_name)
/opt/hostedtoolcache/Python/3.9.20/x64/lib/python3.9/site-packages/dask/base.py:376: in compute
(result,) = compute(self, traverse=False, **kwargs)
/opt/hostedtoolcache/Python/3.9.20/x64/lib/python3.9/site-packages/dask/base.py:662: in compute
results = schedule(dsk, keys, **kwargs)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
arrs = [<8x5 sparse matrix of type '<class 'numpy.float32'>'
with 16 stored elements in Compressed Sparse Row format>, <10x5 sparse matrix of type '<class 'numpy.float32'>'
with 12 stored elements in Compressed Sparse Row format>]
sorter = array([16, 6, 7, 11, 0, 4, 3, 13, 9, 10, 14, 15, 1, 5, 12, 2, 8,
17])
axis = 0
def concatenate_arrays(arrs, sorter, axis):
> return np.take(np.concatenate(arrs, axis=axis), np.argsort(sorter), axis=axis)
E ValueError: zero-dimensional arrays cannot be concatenated
/opt/hostedtoolcache/Python/3.9.20/x64/lib/python3.9/site-packages/dask/array/_shuffle.py:190: ValueError
Check failure on line 1 in test_concatenate_roundtrip[outer-sparse_dask_array-<lambda>-True]
azure-pipelines / scverse.anndata
test_concatenate_roundtrip[outer-sparse_dask_array-<lambda>-True]
ValueError: zero-dimensional arrays cannot be concatenated
Raw output
join_type = 'outer'
array_type = <function as_sparse_dask_array at 0x7fad43daf280>
concat_func = <function <lambda> at 0x7fad40ed2b80>, backwards_compat = True
@mark_legacy_concatenate
@pytest.mark.parametrize(
("concat_func", "backwards_compat"),
[
(partial(concat, merge="unique"), False),
(lambda x, **kwargs: x[0].concatenate(x[1:], **kwargs), True),
],
)
def test_concatenate_roundtrip(join_type, array_type, concat_func, backwards_compat):
adata = gen_adata((100, 10), X_type=array_type, **GEN_ADATA_DASK_ARGS)
remaining = adata.obs_names
subsets = []
while len(remaining) > 0:
n = min(len(remaining), np.random.choice(50))
subset_idx = np.random.choice(remaining, n, replace=False)
subsets.append(adata[subset_idx])
remaining = remaining.difference(subset_idx)
result = concat_func(subsets, join=join_type, uns_merge="same", index_unique=None)
# Correcting for known differences
orig, result = fix_known_differences(
adata, result, backwards_compat=backwards_compat
)
> assert_equal(result[orig.obs_names].copy(), orig)
/home/vsts/work/1/s/tests/test_concatenate.py:197:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
/opt/hostedtoolcache/Python/3.9.20/x64/lib/python3.9/functools.py:888: in wrapper
return dispatch(args[0].__class__)(*args, **kw)
/opt/hostedtoolcache/Python/3.9.20/x64/lib/python3.9/site-packages/anndata/tests/helpers.py:764: in assert_adata_equal
assert_equal(
/opt/hostedtoolcache/Python/3.9.20/x64/lib/python3.9/functools.py:888: in wrapper
return dispatch(args[0].__class__)(*args, **kw)
/opt/hostedtoolcache/Python/3.9.20/x64/lib/python3.9/site-packages/anndata/tests/helpers.py:627: in assert_equal_dask_array
assert_equal(b, a.compute(), exact, elem_name)
/opt/hostedtoolcache/Python/3.9.20/x64/lib/python3.9/site-packages/dask/base.py:376: in compute
(result,) = compute(self, traverse=False, **kwargs)
/opt/hostedtoolcache/Python/3.9.20/x64/lib/python3.9/site-packages/dask/base.py:662: in compute
results = schedule(dsk, keys, **kwargs)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
arrs = [<20x5 sparse matrix of type '<class 'numpy.float32'>'
with 40 stored elements in Compressed Sparse Row format>, <11x5 sparse matrix of type '<class 'numpy.float32'>'
with 22 stored elements in Compressed Sparse Row format>]
sorter = array([ 2, 13, 30, 0, 12, 8, 22, 24, 10, 23, 1, 26, 18, 17, 19, 25, 15,
29, 21, 6, 7, 9, 27, 14, 11, 28, 20, 5, 16, 4, 3])
axis = 0
def concatenate_arrays(arrs, sorter, axis):
> return np.take(np.concatenate(arrs, axis=axis), np.argsort(sorter), axis=axis)
E ValueError: zero-dimensional arrays cannot be concatenated
/opt/hostedtoolcache/Python/3.9.20/x64/lib/python3.9/site-packages/dask/array/_shuffle.py:190: ValueError
Check failure on line 1 in test_concatenate_roundtrip[outer-sparse_dask_array-concat_func0-False]
azure-pipelines / scverse.anndata
test_concatenate_roundtrip[outer-sparse_dask_array-concat_func0-False]
ValueError: zero-dimensional arrays cannot be concatenated
Raw output
join_type = 'outer'
array_type = <function as_sparse_dask_array at 0x7fad43daf280>
concat_func = functools.partial(<function concat at 0x7fad43e0eb80>, merge='unique')
backwards_compat = False
@mark_legacy_concatenate
@pytest.mark.parametrize(
("concat_func", "backwards_compat"),
[
(partial(concat, merge="unique"), False),
(lambda x, **kwargs: x[0].concatenate(x[1:], **kwargs), True),
],
)
def test_concatenate_roundtrip(join_type, array_type, concat_func, backwards_compat):
adata = gen_adata((100, 10), X_type=array_type, **GEN_ADATA_DASK_ARGS)
remaining = adata.obs_names
subsets = []
while len(remaining) > 0:
n = min(len(remaining), np.random.choice(50))
subset_idx = np.random.choice(remaining, n, replace=False)
subsets.append(adata[subset_idx])
remaining = remaining.difference(subset_idx)
result = concat_func(subsets, join=join_type, uns_merge="same", index_unique=None)
# Correcting for known differences
orig, result = fix_known_differences(
adata, result, backwards_compat=backwards_compat
)
> assert_equal(result[orig.obs_names].copy(), orig)
/home/vsts/work/1/s/tests/test_concatenate.py:197:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
/opt/hostedtoolcache/Python/3.9.20/x64/lib/python3.9/functools.py:888: in wrapper
return dispatch(args[0].__class__)(*args, **kw)
/opt/hostedtoolcache/Python/3.9.20/x64/lib/python3.9/site-packages/anndata/tests/helpers.py:764: in assert_adata_equal
assert_equal(
/opt/hostedtoolcache/Python/3.9.20/x64/lib/python3.9/functools.py:888: in wrapper
return dispatch(args[0].__class__)(*args, **kw)
/opt/hostedtoolcache/Python/3.9.20/x64/lib/python3.9/site-packages/anndata/tests/helpers.py:627: in assert_equal_dask_array
assert_equal(b, a.compute(), exact, elem_name)
/opt/hostedtoolcache/Python/3.9.20/x64/lib/python3.9/site-packages/dask/base.py:376: in compute
(result,) = compute(self, traverse=False, **kwargs)
/opt/hostedtoolcache/Python/3.9.20/x64/lib/python3.9/site-packages/dask/base.py:662: in compute
results = schedule(dsk, keys, **kwargs)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
arrs = [<19x5 sparse matrix of type '<class 'numpy.float32'>'
with 38 stored elements in Compressed Sparse Row format>, <15x5 sparse matrix of type '<class 'numpy.float32'>'
with 28 stored elements in Compressed Sparse Row format>]
sorter = array([33, 5, 2, 27, 30, 11, 14, 15, 20, 18, 22, 16, 21, 25, 9, 7, 1,
28, 6, 26, 32, 29, 3, 19, 31, 0, 4, 17, 23, 10, 12, 13, 24, 8])
axis = 0
def concatenate_arrays(arrs, sorter, axis):
> return np.take(np.concatenate(arrs, axis=axis), np.argsort(sorter), axis=axis)
E ValueError: zero-dimensional arrays cannot be concatenated
/opt/hostedtoolcache/Python/3.9.20/x64/lib/python3.9/site-packages/dask/array/_shuffle.py:190: ValueError