Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat: Add rasterization and interpolation features #7

Merged
merged 9 commits into from
Dec 4, 2023
231 changes: 231 additions & 0 deletions src/readyplayerme/meshops/draw/rasterize.py
TechyDaniel marked this conversation as resolved.
Show resolved Hide resolved
Original file line number Diff line number Diff line change
@@ -0,0 +1,231 @@
from collections.abc import Callable

import numpy as np
import skimage

from readyplayerme.meshops.types import Color, ColorMode, Edges, Image, PixelCoord


def interpolate_values(start: Color, end: Color, num_steps: int) -> Color:
"""
Return an array with interpolated values between start and end.

The array includes start and end values and is of length num_steps+2, with the first element being start,
and the last being end, and in between elements are linearly interpolated between these values.

:param start: The starting value(s) for interpolation.Ex. Colors (G, RGB, RGBA), Normals, etc..
:param end: The ending value(s) for interpolation.Ex. Colors (G, RGB, RGBA), Normals, etc..
:param num_steps: The number of interpolation steps.
:return: An array of interpolated values.
"""
if start.shape != end.shape:
msg = "Start and end values must have the same shape."
raise ValueError(msg)

if num_steps < 1:
msg = "Number of steps must be at least 1."
raise ValueError(msg)

t = np.arange(num_steps) / max(num_steps - 1, 1)
return start[None, :] + t[:, None] * (end - start)


def interpolate_segment(segment: Image) -> Image:
"""
Interpolate NaN values in a 1D numpy array.

This function linearly interpolates NaN values in the provided array using the nearest non-NaN values.
Edge NaNs are filled with the nearest valid values.

:param segment: A 1D NumPy array containing numerical values, where some might be NaN. This 'segment'
could be a row or a column from a 2D array.
:return: A 1D NumPy array where NaN values have been replaced by interpolated values
based on adjacent non-NaN elements.
"""
nan_mask = np.isnan(segment)

# Return early if no NaNs are present
if not np.any(nan_mask):
return segment

# Return as-is if all values are NaN
if nan_mask.all():
return segment

x = np.arange(segment.size)
valid_x = x[~nan_mask]
valid_segment = segment[~nan_mask]
# For edge NaNs, use the nearest valid values
left_value = valid_segment[0] if len(valid_segment) > 0 else np.nan
right_value = valid_segment[-1] if len(valid_segment) > 0 else np.nan

return np.interp(x, valid_x, valid_segment, left=left_value, right=right_value)


def lerp_nans_horizontally(image: Image) -> Image:
"""
Linearly interpolates over NaN values in a 2D array, horizontally.

This function applies linear interpolation across each row of the array, filling NaN values based on adjacent
non-NaN elements in the same row. Edge NaNs in a row are filled with the nearest valid values in that row.

:param image: A 2D NumPy array to interpolate over. Each row of the array is processed separately.
:return: A 2D NumPy array with NaN values in each row replaced by interpolated values.
"""
if image.ndim == 1:
image = image[np.newaxis, :]

return np.apply_along_axis(interpolate_segment, 1, image)


def lerp_nans_vertically(image: Image) -> Image:
"""Linearly interpolates over NaN values in a 2D array, vertically.

This function applies linear interpolation across each column of the array, filling NaN values based on adjacent
non-NaN elements in the same column. Edge NaNs in a column are filled with the nearest valid values in that column.

:param image: The array to interpolate over.
:return: The interpolated array.
"""
if image.ndim == 1:
image = image[:, np.newaxis]

return np.apply_along_axis(interpolate_segment, 0, image)


def create_nan_image(width: int, height: int, mode: ColorMode = ColorMode.RGB) -> Image:
"""
Create an image filled with NaN values.

:param width: Width of the image in pixels.
:param height: Height of the image in pixels.
:param mode: The color mode of the image. Default RGB.
:return: An RGB image of height x width, filled with NaN values.
"""
try:
# Manual check since np.full does not care if is negative
if width <= 0 or height <= 0:
msg = "Width and height must be positive integers"
raise ValueError(msg)

shape = (height, width) if mode == ColorMode.GRAYSCALE else (height, width, mode.value)
return np.full(shape, np.nan, dtype=np.float32)
except ValueError as error:
msg = "Failed to create NaN image"
raise ValueError(msg) from error


def draw_lines(
image: Image,
edges: Edges,
image_coords: PixelCoord,
colors: Color,
interpolate_func: Callable[[Color, Color, int], Color] = interpolate_values,
) -> Image:
"""
Draw lines with color interpolation on an image.

:param image: The image to draw lines on.
:param edges: List of tuples representing the start and end indices of the edges
from the image_coords and colors array.
:param image_coords: Texture coordinates for the edges.
:param colors: Array of colors.
:param interpolate_func: Function to interpolate colors.
:return: Image with interpolated lines.
"""
for edge in edges:
try:
color0, color1 = colors[edge].astype(np.float32)
except IndexError:
continue

rr, cc = skimage.draw.line(
image_coords[edge[0]][1], image_coords[edge[0]][0], image_coords[edge[1]][1], image_coords[edge[1]][0]
)

if not (rr_length := len(rr)):
continue

color_steps = interpolate_func(color0, color1, rr_length)
image[rr, cc] = color_steps

return image


def clean_image(image: Image, min_value: int = 0, max_value: int = 255, *, inplace: bool = False) -> Image:
"""
Clean up NaN values in an image and clip values to a range of min-max.

This function replaces NaN and infinity values in the provided image.
It ensures that all values are within the valid range.

:param image: An image which to cleanup.
:param min_value: The minimum value of the valid range.
:param max_value: The maximum value of the valid range.
:param inplace: Whether to modify the image in place or not. Keyword only argument.
:return: A cleaned up image with values clipped to the valid range.
"""
# Avoid side effects on the input image
if not inplace:
image = image.copy()
# Replace NaN values with zero
image = np.nan_to_num(image, nan=min_value)

# Replace infinity values with the maximum finite value in the array
image = np.where(np.isinf(image), np.nanmax(image[np.isfinite(image)]), image)

# Clip values to be within the range
image = np.clip(image, min_value, max_value)

return image


def rasterize(
image: Image,
edges: Edges,
image_coords: PixelCoord,
colors: Color,
interpolate_func: Callable[[Color, Color, int], Color] = interpolate_values,
fill_func: Callable[[Image], Image] = lerp_nans_horizontally,
*,
inplace: bool = False,
) -> Image:
"""
Draw lines with color interpolation and fill NaN values in an image.

:image: An image to draw lines on and fill NaN values in.
:param edges: Index pairs into the image_coords and colors arrays for starts and ends of lines.
:param image_coords: Texture coordinates for the lines' starts and ends.
:param colors: Array of colors for the starts and ends of lines.
:param interpolate_func: Function to interpolate color values between the start and end of a line. Default Lerp.
:param fill_func: Function to fill values(default works with NaN). Default lerp horizontally.
:param inplace: Whether to modify the image in place or not. Keyword only argument.
:return: Image with interpolated lines and filled values.
"""
# Check for empty inputs and return the input image if one of the parameters are not valid
if edges.size == 0 or image_coords.size == 0 or colors.size == 0:
return clean_image(image, inplace=inplace)

try:
unique_indices = np.unique(edges.flatten())
# Failing early before proceeding with the code because draw line loops over the indices
image_coords[unique_indices]
colors[unique_indices]
except IndexError as error:
max_edge_index = unique_indices.max()
msg = (
"An edge index is out of bounds. "
f"Max edge index: {max_edge_index}, "
f"Image coords shape: {image_coords.shape}, "
f"Vertex colors shape: {colors.shape}."
)
raise IndexError(msg) from error

if not inplace:
image = image.copy()
image = draw_lines(image, edges, image_coords, colors, interpolate_func)
image = fill_func(image)

image = clean_image(image, inplace=True)

return image
13 changes: 13 additions & 0 deletions src/readyplayerme/meshops/types.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,5 @@
"""Custom types for meshops."""
from enum import Enum
from typing import Protocol, TypeAlias

import numpy as np
Expand All @@ -12,6 +13,18 @@
IndexGroups: TypeAlias = list[npt.NDArray[np.uint32]]
Color: TypeAlias = npt.NDArray[np.uint8] # Shape RGBA: (c, 4) | RGB: (c, 3) | Grayscale: (c,)


class ColorMode(Enum):
"""Color modes for images."""

GRAYSCALE = 0
RGB = 3
RGBA = 4


Image: TypeAlias = npt.NDArray[np.float32] | npt.NDArray[np.float64] # Shape (h, w, c)


UVs: TypeAlias = npt.NDArray[np.float32] | npt.NDArray[np.float64] # Shape (i, 2)
PixelCoord: TypeAlias = npt.NDArray[np.uint16] # Shape (i, 2)

Expand Down
5 changes: 4 additions & 1 deletion tests/conftest.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,5 @@
"""Pytest fixtures for the whole repo."""
import re
from pathlib import Path

import pytest
Expand All @@ -23,5 +24,7 @@ def auto_profile(request):
profiler.stop()
profiler.print(color=True)
profile_root.mkdir(exist_ok=True)
results_file = profile_root / f"{request.node.name}.html"
# Sanitize the file name
sanitized_name = re.sub(r'[<>:"/\\|?*]', "", request.node.name)
results_file = profile_root / f"{sanitized_name}.html"
profiler.write_html(results_file)
32 changes: 32 additions & 0 deletions tests/readyplayerme/meshops/unit/conftest.py
Original file line number Diff line number Diff line change
Expand Up @@ -92,3 +92,35 @@ class MockMesh:
]
)
return MockMesh(vertices=vertices, edges=edges, faces=faces)


@pytest.fixture
def mocked_image_diagonal_line_rgb():
"""Return an image with 1 diagonal line of lerped rgb colors."""
return np.array(
[
[[0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0]],
[[0, 0, 0], [255, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0]],
[[0, 0, 0], [0, 0, 0], [170, 85, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0]],
[[0, 0, 0], [0, 0, 0], [0, 0, 0], [85, 170, 0], [0, 0, 0], [0, 0, 0]],
[[0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 255, 0], [0, 0, 0]],
[[0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0]],
],
dtype=np.uint8,
)


@pytest.fixture
def mocked_image_diagonal_line_grayscale():
"""Return an image with 1 diagonal line of lerped grayscale colors."""
return np.array(
[
[0, 0, 0, 0, 0, 0],
[0, 255, 0, 0, 0, 0],
[0, 0, 191, 0, 0, 0],
[0, 0, 0, 127, 0, 0],
[0, 0, 0, 0, 63, 0],
[0, 0, 0, 0, 0, 0],
],
dtype=np.uint8,
)
Loading