Tensorflow implementation of realistic fingerprint generator based on DCGAN Deep Convolutional Generative Adversarial Networks.
- Python 3.6+
- Tensorflow 1.12.0
- SciPy
- pillow
- Download NIST Special Database 14.
- Move to "./data" folder
- Download Pre trained model
- Extract checkpoint folder to the main root (under "-Realistic-Fingerprint-Generator").
Generate fingerprint with pre-trained model (NIST14):
$ python main.py --input_height=650 --output_height=650 --test
To train a model with NIST14 dataset:
$ python main.py --dataset nist14 --input_height=650 --output_height=650 --train --crop=True
Or, you can use your own dataset (without central crop) by:
$ mkdir data/DATASET_NAME
... add images to data/DATASET_NAME ...
$ python main.py --dataset DATASET_NAME --train
$ python main.py --dataset DATASET_NAME
$ # example
$ python main.py --dataset=Fimages --input_fname_pattern="*.tif" --train
Use state-of-the-art fingerprint feature extractor fingerNet to extract some statistics from real and generated images
Data set | Mean number of minute | STD number of minute | Mean orientation of minute | STD orientation of minute |
---|---|---|---|---|
Nist14 | 123.39 | 30.63 | 3.30 | 1.85 |
Generated | 123.87 | 30.53 | 3.29 | 1.88 |
Rafael Bouzaglo / [@rafaelbou]