Skip to content

Latest commit

 

History

History
58 lines (37 loc) · 1.89 KB

File metadata and controls

58 lines (37 loc) · 1.89 KB

Realistic Fingerprint Generator

Tensorflow implementation of realistic fingerprint generator based on DCGAN Deep Convolutional Generative Adversarial Networks.

result

Prerequisites

For training:

  • Download NIST Special Database 14.
  • Move to "./data" folder

For testing:

  • Download Pre trained model
  • Extract checkpoint folder to the main root (under "-Realistic-Fingerprint-Generator").

Usage

Generate fingerprint with pre-trained model (NIST14):

$ python main.py --input_height=650 --output_height=650 --test

To train a model with NIST14 dataset:

$ python main.py --dataset nist14 --input_height=650 --output_height=650 --train --crop=True

Or, you can use your own dataset (without central crop) by:

$ mkdir data/DATASET_NAME
... add images to data/DATASET_NAME ...
$ python main.py --dataset DATASET_NAME --train
$ python main.py --dataset DATASET_NAME
$ # example
$ python main.py --dataset=Fimages --input_fname_pattern="*.tif" --train

Evaluation

Use state-of-the-art fingerprint feature extractor fingerNet to extract some statistics from real and generated images

Data set Mean number of minute STD number of minute Mean orientation of minute STD orientation of minute
Nist14 123.39 30.63 3.30 1.85
Generated 123.87 30.53 3.29 1.88

Related works

Author

Rafael Bouzaglo / [@rafaelbou]