Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

ENH: Port basic report-capable interfaces from *NiWorkflows* #74

Merged
merged 9 commits into from
May 25, 2023
Empty file.
275 changes: 275 additions & 0 deletions nireports/interfaces/reporting/base.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,275 @@
# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
#
# Copyright 2023 The NiPreps Developers <[email protected]>
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# We support and encourage derived works from this project, please read
# about our expectations at
#
# https://www.nipreps.org/community/licensing/
#
"""class mixin and utilities for enabling reports for nipype interfaces."""
from pathlib import Path
from nipype import logging
from nipype.utils.filemanip import fname_presuffix
from nipype.interfaces.base import File, traits, isdefined
from nipype.interfaces.mixins import reporting
from nireports.reportlets.utils import cuts_from_bbox, compose_view

_LOGGER = logging.getLogger("nipype.interface")


class _SVGReportCapableInputSpec(reporting.ReportCapableInputSpec):
out_report = File("report.svg", usedefault=True, desc="filename for the visual report")
compress_report = traits.Enum(
"auto",
True,
False,
usedefault=True,
desc="Compress the reportlet using SVGO or"
"WEBP. 'auto' - compress if relevant "
"software is installed, True = force,"
"False - don't attempt to compress",
)


class _RegistrationRCInputSpecRPT(_SVGReportCapableInputSpec):
fixed_params = traits.Dict(
traits.Str, value={}, usedefault=True, desc="pass parameters to plotter",
)
moving_params = traits.Dict(
traits.Str, value={}, usedefault=True, desc="pass parameters to plotter",
)


class RegistrationRC(reporting.ReportCapableInterface):
"""An abstract mixin to registration nipype interfaces."""

input_spec = _RegistrationRCInputSpecRPT

_fixed_image = None
_moving_image = None
_fixed_image_mask = None
_fixed_image_label = "fixed"
_moving_image_label = "moving"
_contour = None
_dismiss_affine = False

def _generate_report(self):
"""Generate the visual report."""
from nilearn.image import threshold_img, load_img
from nilearn.masking import apply_mask, unmask
from nireports.reportlets.mosaic import plot_registration

_LOGGER.info("Generating visual report")

fixed_image_nii = load_img(self._fixed_image)
moving_image_nii = load_img(self._moving_image)
contour_nii = load_img(self._contour) if self._contour is not None else None

if self._fixed_image_mask:
fixed_image_nii = unmask(
apply_mask(fixed_image_nii, self._fixed_image_mask),
self._fixed_image_mask,
)
# since the moving image is already in the fixed image space we
# should apply the same mask
moving_image_nii = unmask(
apply_mask(moving_image_nii, self._fixed_image_mask),
self._fixed_image_mask,
)
mask_nii = load_img(self._fixed_image_mask)
else:
mask_nii = threshold_img(fixed_image_nii, 1e-3)

n_cuts = 7
if not self._fixed_image_mask and contour_nii:
cuts = cuts_from_bbox(contour_nii, cuts=n_cuts)
else:
cuts = cuts_from_bbox(mask_nii, cuts=n_cuts)

# Call composer
compose_view(
plot_registration(
fixed_image_nii,
"fixed-image",
estimate_brightness=True,
cuts=cuts,
label=self._fixed_image_label,
contour=contour_nii,
compress=self.inputs.compress_report,
dismiss_affine=self._dismiss_affine,
plot_params=self.inputs.fixed_params,
),
plot_registration(
moving_image_nii,
"moving-image",
estimate_brightness=True,
cuts=cuts,
label=self._moving_image_label,
contour=contour_nii,
compress=self.inputs.compress_report,
dismiss_affine=self._dismiss_affine,
plot_params=self.inputs.moving_params,
),
out_file=self._out_report,
)


class SegmentationRC(reporting.ReportCapableInterface):
"""An abstract mixin to segmentation nipype interfaces."""

def _generate_report(self):
from nireports.reportlets.mosaic import plot_segs

compose_view(
plot_segs(
image_nii=self._anat_file,
seg_niis=self._seg_files,
bbox_nii=self._mask_file,
out_file=self.inputs.out_report,
masked=self._masked,
compress=self.inputs.compress_report,
),
fg_svgs=None,
out_file=self._out_report,
)


class SurfaceSegmentationRC(reporting.ReportCapableInterface):
"""An abstract mixin to registration nipype interfaces."""

_anat_file = None
_mask_file = None
_contour = None

def _generate_report(self):
"""Generate the visual report."""
from nilearn.image import threshold_img, load_img
from nilearn.masking import apply_mask, unmask
from nireports.reportlets.mosaic import plot_registration

_LOGGER.info("Generating visual report")

anat = load_img(self._anat_file)
contour_nii = load_img(self._contour) if self._contour is not None else None

if self._mask_file:
anat = unmask(apply_mask(anat, self._mask_file), self._mask_file)
mask_nii = load_img(self._mask_file)
else:
mask_nii = threshold_img(anat, 1e-3)

n_cuts = 7
if not self._mask_file and contour_nii:
cuts = cuts_from_bbox(contour_nii, cuts=n_cuts)
else:
cuts = cuts_from_bbox(mask_nii, cuts=n_cuts)

# Call composer
compose_view(
plot_registration(
anat,
"fixed-image",
estimate_brightness=True,
cuts=cuts,
contour=contour_nii,
compress=self.inputs.compress_report,
),
[],
out_file=self._out_report,
)


class ReportingInterface(reporting.ReportCapableInterface):
"""
Interface that always generates a report.

A subclass must define an ``input_spec`` and override ``_generate_report``.

"""

output_spec = reporting.ReportCapableOutputSpec

def __init__(self, generate_report=True, **kwargs):
super(ReportingInterface, self).__init__(generate_report=generate_report, **kwargs)

def _run_interface(self, runtime):
return runtime


class _SimpleBeforeAfterInputSpecRPT(_RegistrationRCInputSpecRPT):
before = File(exists=True, mandatory=True, desc="file before")
after = File(exists=True, mandatory=True, desc="file after")
wm_seg = File(desc="reference white matter segmentation mask")
before_label = traits.Str("before", usedefault=True)
after_label = traits.Str("after", usedefault=True)
dismiss_affine = traits.Bool(False, usedefault=True, desc="rotate image(s) to cardinal axes")


class SimpleBeforeAfterRPT(RegistrationRC, ReportingInterface):
input_spec = _SimpleBeforeAfterInputSpecRPT

def _post_run_hook(self, runtime):
"""there is not inner interface to run"""
self._fixed_image_label = self.inputs.after_label
self._moving_image_label = self.inputs.before_label
self._fixed_image = self.inputs.after
self._moving_image = self.inputs.before
self._contour = self.inputs.wm_seg if isdefined(self.inputs.wm_seg) else None
self._dismiss_affine = self.inputs.dismiss_affine
_LOGGER.info(
"Report - setting before (%s) and after (%s) images",
self._fixed_image,
self._moving_image,
)

return super(SimpleBeforeAfterRPT, self)._post_run_hook(runtime)


class _ResampleBeforeAfterInputSpecRPT(_SimpleBeforeAfterInputSpecRPT):
base = traits.Enum("before", "after", usedefault=True, mandatory=True)


class ResampleBeforeAfterRPT(SimpleBeforeAfterRPT):
input_spec = _ResampleBeforeAfterInputSpecRPT

def _post_run_hook(self, runtime):
from nilearn import image as nli

self._fixed_image = self.inputs.after
self._moving_image = self.inputs.before
if self.inputs.base == "before":
resampled_after = nli.resample_to_img(self._fixed_image, self._moving_image)
fname = fname_presuffix(self._fixed_image, suffix="_resampled", newpath=runtime.cwd)
resampled_after.to_filename(fname)
self._fixed_image = fname
else:
resampled_before = nli.resample_to_img(self._moving_image, self._fixed_image)
fname = fname_presuffix(self._moving_image, suffix="_resampled", newpath=runtime.cwd)
resampled_before.to_filename(fname)
self._moving_image = fname
self._contour = self.inputs.wm_seg if isdefined(self.inputs.wm_seg) else None
_LOGGER.info(
"Report - setting before (%s) and after (%s) images",
self._fixed_image,
self._moving_image,
)

runtime = super(ResampleBeforeAfterRPT, self)._post_run_hook(runtime)
_LOGGER.info("Successfully created report (%s)", self._out_report)
Path(fname).unlink(missing_ok=True)

return runtime