Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Registration tools (arokem) #104

Open
wants to merge 5 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
189 changes: 189 additions & 0 deletions dmriprep/utils/register.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,189 @@
"""
Linear affine registration tools for motion correction.
"""
import attr

import numpy as np
import nibabel as nb
from dipy.align.metrics import CCMetric, EMMetric, SSDMetric

from dipy.align.imaffine import (
transform_centers_of_mass,
AffineMap,
MutualInformationMetric,
AffineRegistration,
)

from dipy.align.transforms import (
TranslationTransform3D,
RigidTransform3D,
AffineTransform3D,
)
from nipype.utils.filemanip import fname_presuffix

syn_metric_dict = {"CC": CCMetric, "EM": EMMetric, "SSD": SSDMetric}


__all__ = [
"c_of_mass",
"translation",
"rigid",
"affine",
"AffineRegistration",
]


def apply_affine(moving, static, transform_affine, invert=False):
"""Apply an affine to transform an image from one space to another.

Parameters
----------
moving : array
The image to be resampled

static : array

Returns
-------
warped_img : the moving array warped into the static array's space.

"""
affine_map = AffineMap(
transform_affine, static.shape, static.affine, moving.shape, moving.affine
)
if invert is True:
warped_arr = affine_map.transform_inverse(np.asarray(moving.dataobj))
else:
warped_arr = affine_map.transform(np.asarray(moving.dataobj))

return nb.Nifti1Image(warped_arr, static.affine)


def average_affines(transforms):
affine_list = [np.load(aff) for aff in transforms]
average_affine_file = fname_presuffix(
transforms[0], use_ext=False, suffix="_average.npy"
)
np.save(average_affine_file, np.mean(affine_list, axis=0))
return average_affine_file


# Affine registration pipeline:
affine_metric_dict = {"MI": MutualInformationMetric, "CC": CCMetric}


def c_of_mass(
moving, static, static_affine, moving_affine, reg, starting_affine, params0=None
):
transform = transform_centers_of_mass(static, static_affine, moving, moving_affine)
transformed = transform.transform(moving)
return transform


def translation(
moving, static, static_affine, moving_affine, reg, starting_affine, params0=None
):
transform = TranslationTransform3D()
translation = reg.optimize(
static,
moving,
transform,
params0,
static_affine,
moving_affine,
starting_affine=starting_affine,
)

return translation


def rigid(
moving, static, static_affine, moving_affine, reg, starting_affine, params0=None
):
transform = RigidTransform3D()
rigid = reg.optimize(
static,
moving,
transform,
params0,
static_affine,
moving_affine,
starting_affine=starting_affine,
)
return rigid


def affine(moving, static, static_affine, moving_affine, reg, starting_affine,
params0=None):
"""
"""
transform = AffineTransform3D()
affine = reg.optimize(
static,
moving,
transform,
params0,
static_affine,
moving_affine,
starting_affine=starting_affine,
)

return affine


@attr.s(slots=True, frozen=True)
class AffineRegistration():
def __init__(self):
nbins = attr.ib(default=32)
sampling_prop = attr.ib(default=1.0)
metric = attr.ib(default="MI")
level_iters = attr.ib(default=[10000, 1000, 100])
sigmas = attr.ib(defaults=[3, 1, 0.0])
factors = attr.ib(defaults=[4, 2, 1])
pipeline = attr.ib(defaults=[c_of_mass, translation, rigid, affine])

def fit(self, static, moving, params0=None):
"""
static, moving : nib.Nifti1Image class images
"""
if params0 is None:
starting_affine = np.eye(4)
else:
starting_affine = params0

use_metric = affine_metric_dict[self.metric](self.nbins,
self.sampling_prop)
affreg = AffineRegistration(
metric=use_metric,
level_iters=self.level_iters,
sigmas=self.sigmas,
factors=self.factors)

# Go through the selected transformation:
for func in self.pipeline:
transform = func(
np.asarray(moving.dataobj),
np.asarray(static.dataobj),
static.affine,
moving.affine,
affreg,
starting_affine,
params0,
)
starting_affine = transform.affine

self.static_affine_ = static.affine
self.moving_affine_ = moving.affine
self.affine_ = starting_affine
self.reg_ = AffineMap(starting_affine,
static.shape, static.affine,
moving.shape, moving.affine)

def apply(self, moving):
"""

"""
data = moving.get_fdata()
assert np.all(moving.affine, self.moving_affine_)
return nb.Nifti1Image(np.array(self.reg_.transform(data)),
self.static_affine_)
1 change: 1 addition & 0 deletions setup.cfg
Original file line number Diff line number Diff line change
Expand Up @@ -26,6 +26,7 @@ install_requires =
nibabel ~= 3.0
nipype ~= 1.4
niworkflows @ git+https://github.com/nipreps/niworkflows.git@master
nitransforms
numpy
pybids >=0.10.2
pyyaml
Expand Down