Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Merged by Bors] - feat(RingTheory/Polynomial/Hilbert): Polynomial.exists_unique_hilbertPoly and Polynomial.hilbertPoly_mul_one_sub_pow_add #19404

Closed
wants to merge 18 commits into from
Closed
Show file tree
Hide file tree
Changes from 16 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
68 changes: 64 additions & 4 deletions Mathlib/RingTheory/Polynomial/HilbertPoly.lean
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,8 @@ Authors: Fangming Li, Jujian Zhang
-/
import Mathlib.Algebra.Polynomial.AlgebraMap
import Mathlib.Algebra.Polynomial.Eval.SMul
import Mathlib.Algebra.Polynomial.Roots
import Mathlib.Order.Interval.Set.Infinite
import Mathlib.RingTheory.Polynomial.Pochhammer
import Mathlib.RingTheory.PowerSeries.WellKnown
import Mathlib.Tactic.FieldSimp
Expand All @@ -17,9 +19,9 @@ given any `p : F[X]` and `d : ℕ`, there exists some `h : F[X]` such that for a
`n : ℕ`, `h(n)` is equal to the coefficient of `Xⁿ` in the power series expansion of `p/(1 - X)ᵈ`.
This `h` is unique and is denoted as `Polynomial.hilbertPoly p d`.

For example, given `d : ℕ`, the power series expansion of `1/(1-X)ᵈ⁺¹` in `F[X]` is
`Σₙ ((d + n).choose d)Xⁿ`, which equals `Σₙ ((n + 1)···(n + d)/d!)Xⁿ` and hence
`Polynomial.hilbertPoly (1 : F[X]) d` is the polynomial `(n + 1)···(n + d)/d!`. Note that
For example, given `d : ℕ`, the power series expansion of `1/(1-X)ᵈ⁺¹` in `F[X]`
is `Σₙ ((d + n).choose d)Xⁿ`, which equals `Σₙ ((n + 1)···(n + d)/d!)Xⁿ` and hence
`Polynomial.hilbertPoly (1 : F[X]) (d + 1)` is the polynomial `(n + 1)···(n + d)/d!`. Note that
if `d! = 0` in `F`, then the polynomial `(n + 1)···(n + d)/d!` no longer works, so we do not
want the characteristic of `F` to be divisible by `d!`. As `Polynomial.hilbertPoly` may take
any `p : F[X]` and `d : ℕ` as its inputs, it is necessary for us to assume that `CharZero F`.
Expand Down Expand Up @@ -96,13 +98,15 @@ lemma hilbertPoly_X_pow_succ (d k : ℕ) :
hilbertPoly ((X : F[X]) ^ k) (d + 1) = preHilbertPoly F d k := by
delta hilbertPoly; simp

variable [CharZero F]

/--
The key property of Hilbert polynomials. If `F` is a field with characteristic `0`, `p : F[X]` and
`d : ℕ`, then for any large enough `n : ℕ`, `(Polynomial.hilbertPoly p d).eval (n : F)` equals the
coefficient of `Xⁿ` in the power series expansion of `p/(1 - X)ᵈ`.
-/
theorem coeff_mul_invOneSubPow_eq_hilbertPoly_eval
[CharZero F] {p : F[X]} (d : ℕ) {n : ℕ} (hn : p.natDegree < n) :
{p : F[X]} (d : ℕ) {n : ℕ} (hn : p.natDegree < n) :
PowerSeries.coeff F n (p * (invOneSubPow F d)) = (hilbertPoly p d).eval (n : F) := by
delta hilbertPoly; induction d with
| zero => simp only [invOneSubPow_zero, Units.val_one, mul_one, coeff_coe, eval_zero]
Expand All @@ -127,4 +131,60 @@ theorem coeff_mul_invOneSubPow_eq_hilbertPoly_eval
rw [hx.2, zero_mul]
· rw [add_comm, Nat.add_sub_assoc (h_le ⟨x, hx⟩), succ_eq_add_one, add_tsub_cancel_right]

/--
The polynomial satisfying the key property of `Polynomial.hilbertPoly p d` is unique. In other
words, if `h : F[X]` and there exists some `N : ℕ` such that for any number `n : ℕ` bigger than
`N` we have `PowerSeries.coeff F n (p * (invOneSubPow F d)) = h.eval (n : F)`, then `h` is exactly
`Polynomial.hilbertPoly p d`.
-/
theorem exists_unique_hilbertPoly (p : F[X]) (d : ℕ) :
∃! (h : F[X]), (∃ (N : ℕ), (∀ (n : ℕ) (_ : N < n),
PowerSeries.coeff F n (p * (invOneSubPow F d)) = h.eval (n : F))) := by
use hilbertPoly p d; constructor
· use p.natDegree
exact fun n hn => coeff_mul_invOneSubPow_eq_hilbertPoly_eval d hn
· rintro h ⟨N, hhN⟩
refine eq_of_infinite_eval_eq h (hilbertPoly p d) ?_
intro hfin
have hsub : Nat.cast '' Set.Ioi (N ⊔ p.natDegree) ⊆
{ x | h.eval x = (p.hilbertPoly d).eval x } := by
intro x hx
simp only [Set.mem_image, Set.mem_Ioi, sup_lt_iff, Set.mem_setOf_eq] at hx ⊢
rcases hx with ⟨n, ⟨hn1, hn2⟩, hn3⟩
rw [← hn3, ← coeff_mul_invOneSubPow_eq_hilbertPoly_eval d hn2, hhN n hn1]
exact Set.Infinite.image (Set.injOn_of_injective Nat.cast_injective)
(Set.Ioi_infinite (N ⊔ p.natDegree)) (Set.Finite.subset hfin hsub)

lemma hilbertPoly_mul_one_sub_succ (p : F[X]) (d : ℕ) :
hilbertPoly (p * (1 - X)) (d + 1) = hilbertPoly p d := by
have heq (n : Set.Ioi (p * (1 - X)).natDegree) :
(hilbertPoly (p * (1 - X)) (d + 1)).eval (n : F) = (hilbertPoly p d).eval (n : F) := by
by_cases hp : p = 0
· simp only [hp, zero_mul, hilbertPoly_zero_nat]
· have hlt : (p * (1 - X)).natDegree < (n : ℕ) := Set.mem_Ioi.1 n.2
rw [← coeff_mul_invOneSubPow_eq_hilbertPoly_eval _ hlt,
← coeff_mul_invOneSubPow_eq_hilbertPoly_eval]
· apply PowerSeries.ext_iff.1 <| by simp only [coe_mul, mul_assoc, coe_sub, coe_one, coe_X,
← one_sub_pow_mul_invOneSubPow_val_add_eq_invOneSubPow_val F d 1, pow_one]
· have hne : (1 : F[X]) - X ≠ 0 := fun h0 => by simpa only [coeff_sub, coeff_one_zero,
coeff_X_zero, sub_zero, coeff_zero, one_ne_zero] using ext_iff.1 h0 0
simp_rw [natDegree_mul hp hne] at hlt
exact lt_of_add_right_lt hlt
refine eq_of_infinite_eval_eq _ _ ?_
· intro hfin
have hsub : Nat.cast '' Set.Ioi (p * (1 - X)).natDegree ⊆
{ x | ((p * (1 - X)).hilbertPoly (d + 1)).eval x = (p.hilbertPoly d).eval x } := by
intro x hx
rcases hx with ⟨n, hn1, hn2⟩
rw [← hn2]
exact heq ⟨n, hn1⟩
exact Set.Infinite.image (Set.injOn_of_injective cast_injective) (Set.Ioi_infinite _)
(Set.Finite.subset hfin hsub)
FMLJohn marked this conversation as resolved.
Show resolved Hide resolved

lemma hilbertPoly_mul_one_sub_pow_add (p : F[X]) (d e : ℕ) :
hilbertPoly (p * (1 - X) ^ e) (d + e) = hilbertPoly p d := by
induction e with
| zero => simp
| succ e he => rw [pow_add, pow_one, ← mul_assoc, ← add_assoc, hilbertPoly_mul_one_sub_succ, he]

end Polynomial
14 changes: 14 additions & 0 deletions Mathlib/RingTheory/PowerSeries/WellKnown.lean
Original file line number Diff line number Diff line change
Expand Up @@ -159,6 +159,20 @@ theorem mk_add_choose_mul_one_sub_pow_eq_one :
(mk fun n ↦ Nat.choose (d + n) d : S⟦X⟧) * ((1 - X) ^ (d + 1)) = 1 :=
(invOneSubPow S (d + 1)).val_inv

theorem invOneSubPow_add (e : ℕ) :
invOneSubPow S (d + e) = invOneSubPow S d * invOneSubPow S e := by
simp_rw [invOneSubPow_eq_inv_one_sub_pow, pow_add]

theorem one_sub_pow_mul_invOneSubPow_val_add_eq_invOneSubPow_val (e : ℕ) :
(1 - X) ^ e * (invOneSubPow S (d + e)).val = (invOneSubPow S d).val := by
rw [invOneSubPow_add, Units.val_mul, mul_comm, mul_assoc, ← invOneSubPow_inv_eq_one_sub_pow]
simp
FMLJohn marked this conversation as resolved.
Show resolved Hide resolved

theorem one_sub_pow_add_mul_invOneSubPow_val_eq_one_sub_pow (e : ℕ) :
(1 - X) ^ (d + e) * (invOneSubPow S e).val = (1 - X) ^ d := by
rw [pow_add, mul_assoc, ← invOneSubPow_inv_eq_one_sub_pow S e]
simp
FMLJohn marked this conversation as resolved.
Show resolved Hide resolved

end invOneSubPow

section Field
Expand Down
Loading