-
Notifications
You must be signed in to change notification settings - Fork 5.4k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Support ONNX conversion and pipeline for SD3 #8984
Closed
Closed
Changes from 5 commits
Commits
Show all changes
6 commits
Select commit
Hold shift + click to select a range
dd25856
support stable diffusion 3 onnx conversion and pipeline
mengniwang95 5f4dda6
Merge branch 'huggingface:main' into main
mengniwang95 290091d
add ut and fix bug
mengniwang95 4f58e61
Update test_onnx_pipeline_stable_diffusion_3.py
mengniwang95 8165020
Update test_onnx_pipeline_stable_diffusion_3.py
mengniwang95 02a0169
Merge branch 'main' into main
DN6 File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
292 changes: 292 additions & 0 deletions
292
scripts/convert_stable_diffusion_3_checkpoint_to_onnx.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,292 @@ | ||
# Copyright 2024 The HuggingFace Team. All rights reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import argparse | ||
import os | ||
import shutil | ||
from pathlib import Path | ||
|
||
import onnx | ||
import torch | ||
from packaging import version | ||
from torch.onnx import export | ||
|
||
from diffusers import OnnxRuntimeModel, OnnxStableDiffusion3Pipeline, StableDiffusion3Pipeline | ||
|
||
|
||
is_torch_less_than_1_11 = version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11") | ||
|
||
|
||
def onnx_export( | ||
model, | ||
model_args: tuple, | ||
output_path: Path, | ||
ordered_input_names, | ||
output_names, | ||
dynamic_axes, | ||
opset, | ||
use_external_data_format=False, | ||
): | ||
output_path.parent.mkdir(parents=True, exist_ok=True) | ||
# PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, | ||
# so we check the torch version for backwards compatibility | ||
if is_torch_less_than_1_11: | ||
export( | ||
model, | ||
model_args, | ||
f=output_path.as_posix(), | ||
input_names=ordered_input_names, | ||
output_names=output_names, | ||
dynamic_axes=dynamic_axes, | ||
do_constant_folding=True, | ||
use_external_data_format=use_external_data_format, | ||
enable_onnx_checker=True, | ||
opset_version=opset, | ||
) | ||
else: | ||
export( | ||
model, | ||
model_args, | ||
f=output_path.as_posix(), | ||
input_names=ordered_input_names, | ||
output_names=output_names, | ||
dynamic_axes=dynamic_axes, | ||
do_constant_folding=True, | ||
opset_version=opset, | ||
) | ||
|
||
|
||
@torch.no_grad() | ||
def convert_models(model_path: str, output_path: str, opset: int, fp16: bool = False): | ||
dtype = torch.float16 if fp16 else torch.float32 | ||
if fp16 and torch.cuda.is_available(): | ||
device = "cuda" | ||
elif fp16 and not torch.cuda.is_available(): | ||
raise ValueError("`float16` model export is only supported on GPUs with CUDA") | ||
else: | ||
device = "cpu" | ||
pipeline = StableDiffusion3Pipeline.from_pretrained(model_path, torch_dtype=dtype).to(device) | ||
output_path = Path(output_path) | ||
|
||
# TEXT ENCODER | ||
num_tokens = pipeline.text_encoder.config.max_position_embeddings | ||
text_hidden_size = pipeline.text_encoder.config.hidden_size | ||
text_input = pipeline.tokenizer( | ||
"A sample prompt", | ||
padding="max_length", | ||
max_length=pipeline.tokenizer.model_max_length, | ||
truncation=True, | ||
return_tensors="pt", | ||
) | ||
onnx_export( | ||
pipeline.text_encoder, | ||
# casting to torch.int32 until the CLIP fix is released: https://github.com/huggingface/transformers/pull/18515/files | ||
model_args=( | ||
text_input.input_ids.to(device=device, dtype=torch.int32), | ||
None, | ||
None, | ||
None, | ||
True, | ||
), | ||
output_path=output_path / "text_encoder" / "model.onnx", | ||
ordered_input_names=["input_ids"], | ||
output_names=["last_hidden_state", "pooler_output", "hidden_states"], | ||
dynamic_axes={ | ||
"input_ids": {0: "batch", 1: "sequence"}, | ||
}, | ||
opset=opset, | ||
) | ||
del pipeline.text_encoder | ||
|
||
num_tokens = pipeline.text_encoder_2.config.max_position_embeddings | ||
text_hidden_size = pipeline.text_encoder_2.config.hidden_size | ||
text_input = pipeline.tokenizer_2( | ||
"A sample prompt", | ||
padding="max_length", | ||
max_length=pipeline.tokenizer_2.model_max_length, | ||
truncation=True, | ||
return_tensors="pt", | ||
) | ||
onnx_export( | ||
pipeline.text_encoder_2, | ||
# casting to torch.int32 until the CLIP fix is released: https://github.com/huggingface/transformers/pull/18515/files | ||
model_args=( | ||
text_input.input_ids.to(device=device, dtype=torch.int32), | ||
None, | ||
None, | ||
None, | ||
True, | ||
), | ||
output_path=output_path / "text_encoder_2" / "model.onnx", | ||
ordered_input_names=["input_ids"], | ||
output_names=["last_hidden_state", "pooler_output", "hidden_states"], | ||
dynamic_axes={ | ||
"input_ids": {0: "batch", 1: "sequence"}, | ||
}, | ||
opset=opset, | ||
) | ||
del pipeline.text_encoder_2 | ||
|
||
text_input = pipeline.tokenizer_3( | ||
"A sample prompt", | ||
padding="max_length", | ||
max_length=pipeline.tokenizer_3.model_max_length, | ||
truncation=True, | ||
return_tensors="pt", | ||
) | ||
onnx_export( | ||
pipeline.text_encoder_3, | ||
# casting to torch.int32 until the CLIP fix is released: https://github.com/huggingface/transformers/pull/18515/files | ||
model_args=(text_input.input_ids.to(device=device, dtype=torch.int32)), | ||
output_path=output_path / "text_encoder_3" / "model.onnx", | ||
ordered_input_names=["input_ids"], | ||
output_names=["last_hidden_state"], | ||
dynamic_axes={ | ||
"input_ids": {0: "batch", 1: "sequence"}, | ||
}, | ||
opset=opset, | ||
) | ||
del pipeline.text_encoder_3 | ||
|
||
# TRANSFORMER | ||
in_channels = pipeline.transformer.config.in_channels | ||
sample_size = pipeline.transformer.config.sample_size | ||
joint_attention_dim = pipeline.transformer.config.joint_attention_dim | ||
pooled_projection_dim = pipeline.transformer.config.pooled_projection_dim | ||
transformer_path = output_path / "transformer" / "model.onnx" | ||
onnx_export( | ||
pipeline.transformer, | ||
model_args=( | ||
torch.randn(2, in_channels, sample_size, sample_size).to(device=device, dtype=dtype), | ||
torch.randn(2, num_tokens, joint_attention_dim).to(device=device, dtype=dtype), | ||
torch.randn(2, pooled_projection_dim).to(device=device, dtype=dtype), | ||
torch.randn(2).to(device=device, dtype=dtype), | ||
), | ||
output_path=transformer_path, | ||
ordered_input_names=["hidden_states", "encoder_hidden_states", "pooled_projections", "timestep"], | ||
output_names=["out_sample"], # has to be different from "sample" for correct tracing | ||
dynamic_axes={ | ||
"hidden_states": {0: "batch", 1: "channels", 2: "height", 3: "width"}, | ||
"encoder_hidden_states": {0: "batch", 1: "sequence", 2: "embed_dims"}, | ||
"pooled_projections": {0: "batch", 1: "projection_dim"}, | ||
"timestep": {0: "batch"}, | ||
}, | ||
opset=opset, | ||
use_external_data_format=True, # UNet is > 2GB, so the weights need to be split | ||
) | ||
model_path = str(transformer_path.absolute().as_posix()) | ||
transformer_dir = os.path.dirname(model_path) | ||
transformer = onnx.load(model_path) | ||
# clean up existing tensor files | ||
shutil.rmtree(transformer_dir) | ||
os.mkdir(transformer_dir) | ||
# collate external tensor files into one | ||
onnx.save_model( | ||
transformer, | ||
model_path, | ||
save_as_external_data=True, | ||
all_tensors_to_one_file=True, | ||
location="weights.pb", | ||
convert_attribute=False, | ||
) | ||
del pipeline.transformer | ||
|
||
# VAE ENCODER | ||
vae_encoder = pipeline.vae | ||
vae_in_channels = vae_encoder.config.in_channels | ||
vae_sample_size = vae_encoder.config.sample_size | ||
# need to get the raw tensor output (sample) from the encoder | ||
vae_encoder.forward = lambda sample, return_dict: vae_encoder.encode(sample, return_dict)[0].sample() | ||
onnx_export( | ||
vae_encoder, | ||
model_args=( | ||
torch.randn(1, vae_in_channels, vae_sample_size, vae_sample_size).to(device=device, dtype=dtype), | ||
False, | ||
), | ||
output_path=output_path / "vae_encoder" / "model.onnx", | ||
ordered_input_names=["sample", "return_dict"], | ||
output_names=["latent_sample"], | ||
dynamic_axes={ | ||
"sample": {0: "batch", 1: "channels", 2: "height", 3: "width"}, | ||
}, | ||
opset=opset, | ||
) | ||
|
||
# VAE DECODER | ||
vae_decoder = pipeline.vae | ||
vae_latent_channels = vae_decoder.config.latent_channels | ||
vae_out_channels = vae_decoder.config.out_channels | ||
# forward only through the decoder part | ||
vae_decoder.forward = vae_encoder.decode | ||
onnx_export( | ||
vae_decoder, | ||
model_args=( | ||
torch.randn(1, vae_latent_channels, sample_size, sample_size).to(device=device, dtype=dtype), | ||
False, | ||
), | ||
output_path=output_path / "vae_decoder" / "model.onnx", | ||
ordered_input_names=["latent_sample", "return_dict"], | ||
output_names=["sample"], | ||
dynamic_axes={ | ||
"latent_sample": {0: "batch", 1: "channels", 2: "height", 3: "width"}, | ||
}, | ||
opset=opset, | ||
) | ||
del pipeline.vae | ||
|
||
onnx_pipeline = OnnxStableDiffusion3Pipeline( | ||
vae_encoder=OnnxRuntimeModel.from_pretrained(output_path / "vae_encoder"), | ||
vae_decoder=OnnxRuntimeModel.from_pretrained(output_path / "vae_decoder"), | ||
text_encoder=OnnxRuntimeModel.from_pretrained(output_path / "text_encoder"), | ||
tokenizer=pipeline.tokenizer, | ||
text_encoder_2=OnnxRuntimeModel.from_pretrained(output_path / "text_encoder_2"), | ||
tokenizer_2=pipeline.tokenizer_2, | ||
text_encoder_3=OnnxRuntimeModel.from_pretrained(output_path / "text_encoder_3"), | ||
tokenizer_3=pipeline.tokenizer_3, | ||
transformer=OnnxRuntimeModel.from_pretrained(output_path / "transformer"), | ||
scheduler=pipeline.scheduler, | ||
) | ||
|
||
onnx_pipeline.save_pretrained(output_path) | ||
print("ONNX pipeline saved to", output_path) | ||
|
||
del pipeline | ||
del onnx_pipeline | ||
_ = OnnxStableDiffusion3Pipeline.from_pretrained(output_path, provider="CPUExecutionProvider") | ||
print("ONNX pipeline is loadable") | ||
|
||
|
||
if __name__ == "__main__": | ||
parser = argparse.ArgumentParser() | ||
|
||
parser.add_argument( | ||
"--model_path", | ||
type=str, | ||
required=True, | ||
help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).", | ||
) | ||
|
||
parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.") | ||
|
||
parser.add_argument( | ||
"--opset", | ||
default=14, | ||
type=int, | ||
help="The version of the ONNX operator set to use.", | ||
) | ||
parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode") | ||
|
||
args = parser.parse_args() | ||
|
||
convert_models(args.model_path, args.output_path, args.opset, args.fp16) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Can you also collate the external tensor files into one file for this model? Like what you are doing with the transformer.