Skip to content

Commit

Permalink
Update algebraic_construction.tex
Browse files Browse the repository at this point in the history
  • Loading branch information
hooyuser committed Dec 11, 2023
1 parent 2855713 commit 3a77014
Showing 1 changed file with 102 additions and 24 deletions.
126 changes: 102 additions & 24 deletions algebraic_construction.tex
Original file line number Diff line number Diff line change
Expand Up @@ -217,28 +217,34 @@ \subsection{Relation}
Equivalence & \poscell{Reflexive} & \poscell{Symmetric} & \poscell{Transitive} & \\ \bottomrule
\end{tabular}
\end{table}
% \begin{table}[h]
% \centering
% \renewcommand{\arraystretch}{1.6}
% \begin{tabular}{l|l|l|l|l}
% \toprule
% \textbf{Homogeneous Relation} & \multicolumn{1}{c|}{\textbf{Reflexivity}} & \multicolumn{1}{c|}{\textbf{Symmetry}} & \multicolumn{1}{c|}{\textbf{Transitivity}} & \multicolumn{1}{c}{\textbf{Connectedness}} \\
% \midrule
% \midrule
% Directed graph & & & & \\ \midrule
% Undirected graph & & Symmetric & & \\ \midrule
% Dependency & Reflexive & Symmetric & & \\ \midrule
% Tournament & Irreflexive & Asymmetric & & \\ \midrule
% Preorder & Reflexive & & Transitive & \\ \midrule
% Total preorder & Reflexive & & Transitive & Strongly Connected \\ \midrule
% Partial order & Reflexive & Antisymmetric & Transitive & \\ \midrule
% Strict partial order & Irreflexive & Asymmetric & Transitive & \\ \midrule
% Total order & Reflexive & Antisymmetric & Transitive & Strongly Connected \\ \midrule
% Strict total order & Irreflexive & Asymmetric & Transitive & Connected \\ \midrule
% Partial equivalence & & Symmetric & Transitive & \\ \midrule
% Equivalence & Reflexive & Symmetric & Transitive & \\ \bottomrule
% \end{tabular}
% \end{table}

\dfn{Filtered Set}{
A \textbf{filtered set} or \textbf{directed set} is a preorder set $(X, \le)$ with an additional property that every pair of elements has an upper bound. In other words, for every $x, y \in X$, there exists $z \in X$ such that $x \le z$ and $y \le z$.
}
\prop{Intersection of equivalence relations is an equivalence relation}{
The intersection of a family of equivalence relations on a set $X$ is an equivalence relation on $X$.
}
\pf{
Suppose $(R_i)_{i\in i}$ is a family of equivalence relations on $X$. We can check that $\bigcap\limits_{i\in I}R_i$ is an equivalence relation on $X$ by checking the three properties of equivalence relation:
\begin{enumerate}[(i)]
\item Reflexivity: For any $x\in X$, since $(x,x)\in R_i$ for all $i\in I$, we have $(x,x)\in \bigcap\limits_{i\in I}R_i$.
\item Symmetry: For any $x,y\in X$,
\[
(x,y)\in \bigcap\limits_{i\in I}R_i\implies\forall i\in I,(x,y)\in R_i\implies\forall i\in I, (y,x)\in R_i\implies(y,x)\in \bigcap\limits_{i\in I}R_i
\]
\item Transitivity: For any $x,y,z\in X$,
\begin{align*}
(x,y)\in \bigcap\limits_{i\in I}R_i\text{ and }(y,z)\in \bigcap\limits_{i\in I}R_i
&\implies\forall i\in I,(x,y)\in R_i\text{ and }(y,z)\in R_i\\
&\implies\forall i\in I, (x,z)\in R_i\\
&\implies(x,z)\in \bigcap\limits_{i\in I}R_i
\end{align*}
\end{enumerate}
}

\dfn{Generated Equivalence Relation}{
Let $X$ be a set and $R\subseteq X\times X$ be a relation on $X$. The \textbf{generated relation} $\langle R \rangle$ is defined as the smallest equivalence relation on $X$ that contains $R$, or equivalently, the intersection of all equivalence relations on $X$ that contain $R$.
}

\section{Function}
\prop{}{
Expand Down Expand Up @@ -679,6 +685,41 @@ \section{Limits and Colimits}
\end{tikzcd}
\]
}

\ex{Colimit of $\mathsf{Set}$-valued Functor}{
Let $F:\mathsf{J}\to \mathsf{Set}$ be a functor. Define a relation $\sim^*$ on $\coprod\limits_{i\in \mathrm{Ob}(\mathsf{J})}F(i)$: for any $(i,x),(j,y)\in \coprod\limits_{i\in \mathrm{Ob}(\mathsf{J})}F(i)$,
\[
(i,x)\sim^* (j,y)\iff \text{there exists }\lambda:i\to j\text{ in }\mathrm{Hom}_\mathsf{J}(i,j)\text{ such that }F(\lambda)(x)=y.
\]
Let $\sim$ denote the equivalence relation generated by $\sim^*$. Then
\[
\varinjlim F\cong\coprod_{i\in \mathrm{Ob}(\mathsf{J})}F(i)/\sim
\]
and the map $\phi_i:F(i)\to \varinjlim F$ is given by the composition
\[
F(i)\xrightarrow{\quad\iota_i\quad}\coprod_{i\in \mathrm{Ob}(\mathsf{J})}F(i)\xrightarrow{\quad\pi\quad}\coprod_{i\in \mathrm{Ob}(\mathsf{J})}F(i)/\sim
\]
If $\mathsf{J}$ is a filtered category, then the equivalence relation $\sim$ has a explicit description: for any $(i,x),(j,y)\in \coprod\limits_{i\in \mathrm{Ob}(\mathsf{J})}F(i)$,
\[
(i,x)\sim (j,y)\iff \text{there exists }\lambda_1:i\to k\text{ and }\lambda_2:j\to k\text{ such that }F(\lambda_1)(x)=F(\lambda_2)(y).
\]
}
\pf{
It is easy to show
\[
\varinjlim F\cong\coprod_{i\in \mathrm{Ob}(\mathsf{J})}F(i)/\sim
\]
by checking the universal property of $\varinjlim F$. If $\mathsf{J}$ is a filtered category, first we can check
\[
(i,x)\approx (j,y)\iff \text{there exists }\lambda_1:i\to k\text{ and }\lambda_2:j\to k\text{ such that }F(\lambda_1)(x)=F(\lambda_2)(y).
\]
is an equivalence relation. To show $\approx\;=\;\sim$, let's assume $\backsimeq$ is any equivalence relation containing $\sim^*$. If $(i,x)\approx(j,y)$, then there exists $\lambda_1:i\to k$ and $\lambda_2:j\to k$ such that $F(\lambda_1)(x)=F(\lambda_2)(y)=z$. Hence
\[
(i,x)\sim^* (k,z)\text{ and }(j,y)\sim^* (k,z)\implies(i,x)\backsimeq (k,z)\text{ and }(j,y)\backsimeq (k,z)\implies (i,x)\backsimeq (j,y).
\]
This implies $\backsimeq$ contains $\approx$. Therefore, $\approx$ is the smallest equivalence relation containing $\sim^*$, which means $\approx$ coincides with $\sim$.
}

\dfn{Complete Category}{
A category $\mathsf{C}$ is \textbf{complete} if it has all small limits. That is, for any functor $F:\mathsf{J}\to \mathsf{C}$ with $\mathsf{J}$ small, $\varprojlim F$ exists.
}
Expand Down Expand Up @@ -744,6 +785,17 @@ \section{Limits and Colimits}
(X,\leq)&\longmapsto \mathsf{X}
\end{align*}
}

\ex{Filtered Set}{
A filtered set can be regarded as a filtered (0,1)-category with objects being elements of the set and morphisms being
\begin{align*}
\mathrm{Hom}(x,y)=\begin{cases}
\{*\} & \text{if }x\leq y\\
\varnothing & \text{otherwise}
\end{cases}
\end{align*}
}

\section{Representable Functor}
\dfn{Presheaf}{
Let $\mathsf{C}$ be a category. A \textbf{presheaf} on $\mathsf{C}$ is a functor $F:\mathsf{C}^{\mathrm{op}}\to \mathsf{Set}$.
Expand Down Expand Up @@ -2396,7 +2448,7 @@ \subsection{Ideals}
\dfn{Ideal generated from subset}{
Let $R$ be a commutative ring and $\mathcal I(R)$ be the set of all ideals of $R$. Suppose $S\subseteq R$ be a subset. The \textbf{ideal generated by $S$}, denoted by $(S)$, is the smallest ideal of $R$ containing $S$, i.e.
\[
(S)=\bigcap_{\substack{ I\in \mathcal I(R)\\S\subseteq I}}I.
(S)=\bigcap_{\substack{ I\in \mathcal I(R)\\S\subseteq I}}I=\left\{\sum_{i=1}^n r_is_i\mid n\in\mathbb{Z}_{+},r_i\in R,s_i\in S\right\}.
\]
If $S=\{a_1,\dots,a_n\}$, we write
\[
Expand All @@ -2419,6 +2471,17 @@ \subsection{Ideals}
\].
\end{enumerate}
}
\prop{}{
Let $R$ be a commutative ring and $S$ be a subset of $R$. Then
$$(S)=\sum_{s\in S}(s).$$
}
\pf{
\begin{align*}
\sum_{s \in S} (s)&=\left\{a_{s_1}+ \cdots +a_{s_n}\mid n\in\mathbb{Z}_{+},s_i\in S,a_{s_i}\in (s_i)\right\}\\
&=\left\{r_1s_{1}+ \cdots +r_ns_{n}\mid n\in\mathbb{Z}_{+},s_i\in S,r_i\in R\right\}\\
&=(S).
\end{align*}
}

\prop{Properties of Ideal Operations}{
\begin{enumerate}[(i)]
Expand All @@ -2427,7 +2490,7 @@ \subsection{Ideals}
\item ${I} ({J}+{K}) = {I} {J}+{I} {K}$
\item $$
\begin{gathered}
\left(\sum_{t \in T} I_t\right) J=\sum_{t \in T}\left(I_t J\right), \quad J\left(\sum_{t \in T} I_t\right)=\sum_{t \in T} J I_t.
J\sum_{t \in T} I_t=\sum_{t \in T} J I_t.
\end{gathered}
$$
\item $I(J K)=(I J) K$
Expand All @@ -2442,6 +2505,21 @@ \subsection{Ideals}
\end{enumerate}
}

\prop{}{
Let $I$ and $J$ be ideals of a commutative ring $R$ and $\mathfrak{p}$ be a prime ideal of $R$. Then
\[
I\cap J\subseteq \mathfrak{p}\iff IJ\subseteq \mathfrak{p}\iff I\subseteq \mathfrak{p}\text{ or }J\subseteq \mathfrak{p}.
\]
}
\pf{
We have the following chain of implications:
\begin{itemize}
\item $I\cap J\subseteq \mathfrak{p}\implies IJ\subseteq \mathfrak{p}$. Note that $IJ\subseteq I\cap J$. The result follows immediately.
\item $IJ\subseteq \mathfrak{p}\implies I\subseteq \mathfrak{p}\text{ or }J\subseteq \mathfrak{p}$. Assume $IJ\subseteq \mathfrak{p}$. Suppose $I\subsetneq \mathfrak{p}$ and $J\subsetneq \mathfrak{p}$. Then there exist $a\in I-\mathfrak{p}$ and $b\in J-\mathfrak{p}$. Since $\mathfrak{p}$ is prime, $ab\in IJ\subseteq \mathfrak{p}$ implies $a\in \mathfrak{p}$ or $b\in \mathfrak{p}$, which is a contradiction. Hence $I\subseteq \mathfrak{p}$ or $J\subseteq \mathfrak{p}$.
\item $I\subseteq \mathfrak{p}\text{ or }J\subseteq \mathfrak{p}\implies I\cap J\subseteq \mathfrak{p}$. Note that $I\cap J\subseteq I$. The result follows immediately.
\end{itemize}
}

\dfn{Radical Ideal}{
An ideal $I$ is called a \textbf{radical ideal} if $I=\sqrt{I}$.
}
Expand Down

0 comments on commit 3a77014

Please sign in to comment.