Skip to content

Commit

Permalink
Update algebraic_construction.tex
Browse files Browse the repository at this point in the history
  • Loading branch information
hooyuser committed Dec 1, 2023
1 parent 0d0f223 commit 2855713
Showing 1 changed file with 80 additions and 1 deletion.
81 changes: 80 additions & 1 deletion algebraic_construction.tex
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,7 @@
\usepackage{multirow}
\usepackage{colortbl}
\usepackage{mathrsfs}
\usepackage{bbm}


\newcommand{\poscell}[1]{\cellcolor{green!22}#1}
Expand Down Expand Up @@ -87,6 +88,22 @@ \chapter*{Notation Conventions}
\begin{itemize}
\item $\mathbb{N}$: the set of natural numbers $\{0,1,2,\cdots\}$.
\end{itemize}
We use sans-serif font for categories. Some common categories are
\begin{itemize}
\item $\mathsf{Set}$: the category of sets.
\item $\mathsf{Mon}$: the category of monoids.
\item $\mathsf{Grp}$: the category of groups.
\item $\mathsf{Ab}$: the category of abelian groups.
\item $\mathsf{Ring}$: the category of rings.
\item $\mathsf{CRing}$: the category of commutative rings.
\item $\mathsf{Fld}$: the category of fields.
\item $R\text{-}\mathsf{Mod}$: the category of $R$-modules, where $R\in \mathrm{Ob}\left(\mathsf{Ring}\right)$.
\item $K\text{-}\mathsf{Vect}$: the category of $K$-vector spaces, where $K\in \mathrm{Ob}\left(\mathsf{Fld}\right)$.
\item $R\text{-}\mathsf{Alg}$: the category of associative $R$-algebras, where $R\in \mathrm{Ob}\left(\mathsf{CRing}\right)$.
\item $R\text{-}\mathsf{CAlg}$: the category of commutative $R$-algebras, where $R\in \mathrm{Ob}\left(\mathsf{CRing}\right)$.
\item $\mathsf{Top}$: the category of topological spaces.
\end{itemize}


\chapter{Set Theory}
\section{Set}
Expand Down Expand Up @@ -981,7 +998,7 @@ \section{Representable Functor}
&\iff (A,u) \text{ is a universal element of }F.
\end{align*}
}
\cor{}{
\cor{Initial Object Characterized by Representable Functor}{
Suppose $\mathsf{C}$ is a locally small category.
\begin{itemize}
\item $A\in\mathrm{Ob}(\mathsf{C})$ is initial in $\mathsf{C}$ if and only if the functor $\Delta \{*\}:\mathsf{C}\to \mathsf{Set}$ is naturally isomorphic to $\mathrm{Hom}_\mathsf{C}\left(A,-\right)$.
Expand Down Expand Up @@ -1160,6 +1177,10 @@ \section{Abelian Category}
\end{enumerate}
}

\prop{}{
If $\mathsf{A}$ is an abelian category, then $\left[\mathsf{C}^\mathrm{op}, \mathsf{A}\right]$ is abelian for any small category $\mathsf{C}$.
}


\chapter{Group}
\section{Basic Concepts}
Expand Down Expand Up @@ -2291,6 +2312,10 @@ \section{Basic Concepts}

\chapter{Commutative Ring}
\section{Basic Concepts}
A commutative ring $R$ is a commutative $R$-algebra. And we have a categorical isomorphism
\[
\mathsf{CRing}\cong \mathbb{Z}\text{-}\mathsf{CAlg}.
\]
\dfn[local_commutative_ring]{Local Commutative Ring}{
Let $R$ be a commutative ring. Then the following are equivalent:
\begin{enumerate}[(i)]
Expand Down Expand Up @@ -2914,6 +2939,11 @@ \section{Valuation Ring}
\end{enumerate}
}

\section{Integral Element}
\dfn{Integral Element}{
Let $R$ be an integral domain and $K$ be its field of fractions. An element $x\in K$ is called \textbf{integral} over $R$ if there exists a monic polynomial $f\in R[x]$ such that $f(x)=0$. The set of all elements in $K$ that are integral over $R$ is called the \textbf{integral closure} of $R$ in $K$, denoted by $\overline{R}$.
}

\chapter{Module}
\section{Basic Concepts}
\dfn{Module}{
Expand Down Expand Up @@ -3257,6 +3287,20 @@ \section{Exterior Algebra and Symmetric Algebra}
is called the \textbf{$k$-th exterior power of $M$}.
}

\section{Commutative Algebra}
\dfn{Commutative Algebra}{
Let $R$ be a commutative ring. A \textbf{commutative $R$-algebra} is an $R$-algebra where the multiplication is commutative.
}


\dfn{Free Commutative Algebra}{
Let $R$ be a commutative ring.
\begin{tikzcd}[ampersand replacement=\&]
\& X \arrow[ld, "\iota"'] \arrow[rd, "f"] \& \\
F \arrow[rr, "\hat{f}"] \& \& A
\end{tikzcd}
}

\chapter{Field Theory}
\section{Field Extension}
\dfn{Field}{
Expand Down Expand Up @@ -3488,6 +3532,30 @@ \section{$p$-adic Numbers}
\end{itemize}
}
\section{Dirichlet Charater}
\dfn{Euler's Totient Function}{
The \textbf{Euler's totient function} is defined as
\begin{align*}
\varphi:\mathbb{N}&\longrightarrow \mathbb{N}\\
n&\longmapsto \left|\left\{a\in \mathbb{N}\mid 1\le a\le n, (a,n)=1\right\}\right|.
\end{align*}
}
\prop{Euler's Product Formula}{
For any $n\in \mathbb{N}$, we have
\[
\varphi(n)=\sum_{k=1}^n \mathbbm{1}_{(k,n)=1}=n\prod_{p\mid n}\left(1-\frac{1}{p}\right).
\]
}
\prop{Properties of Euler's Totient Function}{
For any $m,n\in \mathbb{N}$, we have
\begin{enumerate}[(i)]
\item $\varphi(mn)=\varphi(m)\varphi(n)$ if $(m,n)=1$.
\item $\varphi(n)\mid n$.
\item $\varphi(n)=n$ if and only if $n=1$.
\item $\varphi(p^k)=p^k-p^{k-1}$ for any prime $p$ and $k\in \mathbb{N}$.
\item $\varphi(n)\le n-\sqrt{n}$ for any $n\in \mathbb{N}$.
\end{enumerate}
}

\dfn{Dirichlet Character}{
Given any group homomorphism $\rho_m:(\mathbb{Z} / m \mathbb{Z})^{\times} \rightarrow \mathbb{C}^{\times}$, we can define a function $\chi:\mathbb{Z} \rightarrow \mathbb{C}$ by
\begin{align*}
Expand All @@ -3498,6 +3566,17 @@ \section{Dirichlet Charater}
\end{align*}
Such function $\chi_m$ is called a \textbf{Dirichlet character modulo $m$}.
}
\dfn{Principal Dirichlet Character}{
The \textbf{principal Dirichlet character modulo $m$} is the simplest Dirichlet character defined by
\begin{align*}
\chi_0\left(a\right)=\left\{\begin{array}{lll}
0 & \text { if } a \neq 1 \\
1 & \text { if } a=1
\end{array}\right.
\end{align*}
}


\chapter*{Appendix}
\begin{table}[h]
\centering
Expand Down

0 comments on commit 2855713

Please sign in to comment.