English | 中文
Data-Juicer is a one-stop data processing system to make data higher-quality, juicier, and more digestible for LLMs. This project is being actively updated and maintained, and we will periodically enhance and add more features and data recipes. We welcome you to join us in promoting LLM data development and research!
If you find Data-Juicer useful for your research or development, please kindly cite our work.
-
[2023-10-13] Our first data-centric LLM competition begins! Please visit the competition's official websites, FT-Data Ranker (1B Track, 7B Track), for more information.
-
[2023-10-8] We update our paper to the 2nd version and release the corresponding version 0.1.2 of Data-Juicer!
- Data-Juicer: A One-Stop Data Processing System for Large Language Models
- Table of Contents
-
Systematic & Reusable: Empowering users with a systematic library of 20+ reusable config recipes, 50+ core OPs, and feature-rich dedicated toolkits, designed to function independently of specific LLM datasets and processing pipelines.
-
Data-in-the-loop: Allowing detailed data analyses with an automated report generation feature for a deeper understanding of your dataset. Coupled with multi-dimension automatic evaluation capabilities, it supports a timely feedback loop at multiple stages in the LLM development process.
-
Comprehensive Data Processing Recipes: Offering tens of pre-built data processing recipes for pre-training, fine-tuning, en, zh, and more scenarios. Validated on reference LLaMA models.
-
Enhanced Efficiency: Providing a speedy data processing pipeline requiring less memory and CPU usage, optimized for maximum productivity.
-
Flexible & Extensible: Accommodating most types of data formats (e.g., jsonl, parquet, csv, ...) and allowing flexible combinations of OPs. Feel free to implement your own OPs for customizable data processing.
-
User-Friendly Experience: Designed for simplicity, with comprehensive documentation, easy start guides and demo configs, and intuitive configuration with simple adding/removing OPs from existing configs.
- Recommend Python==3.8
- gcc >= 5 (at least C++14 support)
- Run the following commands to install the latest basic
data_juicer
version in editable mode:
cd <path_to_data_juicer>
pip install -v -e .
- Some OPs rely on some other too large or low-platform-compatibility third-party libraries. You can install optional dependencies as needed:
cd <path_to_data_juicer>
pip install -v -e . # install a minimal dependencies, which support the basic functions
pip install -v -e .[tools] # install a subset of tools dependencies
The dependency options are listed below:
Tag | Description |
---|---|
. or .[mini] |
Install minimal dependencies for basic Data-Juicer. |
.[all] |
Install all optional dependencies (including minimal dependencies and all of the following). |
.[sci] |
Install all dependencies for all OPs. |
.[dist] |
Install dependencies for distributed data processing. (Experimental) |
.[dev] |
Install dependencies for developing the package as contributors. |
.[tools] |
Install dependencies for dedicated tools, such as quality classifiers. |
- Run the following command to install the latest released
data_juicer
usingpip
:
pip install py-data-juicer
- Note:
- only the basic APIs in
data_juicer
and two basic tools (data processing and analysis) are available in this way. If you want customizable and complete functions, we recommend you installdata_juicer
from source. - The release versions from pypi have a certain lag compared to the latest version from source.
So if you want to follow the latest functions of
data_juicer
, we recommend you install from source.
- only the basic APIs in
- You can
-
either pull our pre-built image from DockerHub:
docker pull datajuicer/data-juicer:<version_tag>
-
or run the following command to build the docker image including the latest
data-juicer
with provided Dockerfile:docker build -t data-juicer:<version_tag> .
-
import data_juicer as dj
print(dj.__version__)
- Run
process_data.py
tool ordj-process
command line tool with your config as the argument to process your dataset.
# only for installation from source
python tools/process_data.py --config configs/demo/process.yaml
# use command line tool
dj-process --config configs/demo/process.yaml
- Note: For some operators that involve third-party models or resources which are not stored locally on your computer, it might be slow for the first running because these ops need to download corresponding resources into a directory first.
The default download cache directory is
~/.cache/data_juicer
. Change the cache location by setting the shell environment variable,DATA_JUICER_CACHE_HOME
to another directory, and you can also changeDATA_JUICER_MODELS_CACHE
orDATA_JUICER_ASSETS_CACHE
in the same way:
# cache home
export DATA_JUICER_CACHE_HOME="/path/to/another/directory"
# cache models
export DATA_JUICER_MODELS_CACHE="/path/to/another/directory/models"
# cache assets
export DATA_JUICER_ASSETS_CACHE="/path/to/another/directory/assets"
- Run
analyze_data.py
tool ordj-analyze
command line tool with your config as the argument to analyse your dataset.
# only for installation from source
python tools/analyze_data.py --config configs/demo/analyser.yaml
# use command line tool
dj-analyze --config configs/demo/analyser.yaml
- Note: Analyser only compute stats of Filter ops. So extra Mapper or Deduplicator ops will be ignored in the analysis process.
- Run
app.py
tool to visualize your dataset in your browser. - Note: only available for installation from source.
streamlit run app.py
- Config files specify some global arguments, and an operator list for the
data process. You need to set:
- Global arguments: input/output dataset path, number of workers, etc.
- Operator list: list operators with their arguments used to process the dataset.
- You can build up your own config files by:
- ➖:Modify from our example config file
config_all.yaml
which includes all ops and default arguments. You just need to remove ops that you won't use and refine some arguments of ops. - ➕:Build up your own config files from scratch. You can refer our
example config file
config_all.yaml
, op documents, and advanced Build-Up Guide for developers. - Besides the yaml files, you also have the flexibility to specify just one (of several) parameters on the command line, which will override the values in yaml files.
- ➖:Modify from our example config file
python xxx.py --config configs/demo/process.yaml --language_id_score_filter.lang=en
- Our formatters support some common input dataset formats for now:
- Multi-sample in one file: jsonl/json, parquet, csv/tsv, etc.
- Single-sample in one file: txt, code, docx, pdf, etc.
- However, data from different sources are complicated and diverse. Such as:
- Raw arXiv data downloaded from S3 include thousands of tar files and even more gzip files in them, and expected tex files are embedded in the gzip files so they are hard to obtain directly.
- Some crawled data include different kinds of files (pdf, html, docx, etc.). And extra information like tables, charts, and so on is hard to extract.
- It's impossible to handle all kinds of data in Data-Juicer, issues/PRs are welcome to contribute to process new data types!
- Thus, we provide some common preprocessing tools in
tools/preprocess
for you to preprocess these data.- You are welcome to make your contributions to new preprocessing tools for the community.
- We highly recommend that complicated data can be preprocessed to jsonl or parquet files.
- If you build or pull the docker image of
data-juicer
, you can run the commands or tools mentioned above using this docker image. - Run directly:
# run the data processing directly
docker run --rm \ # remove container after the processing
--name dj \ # name of the container
-v <host_data_path>:<image_data_path> \ # mount data or config directory into the container
-v ~/.cache/:/root/.cache/ \ # mount the cache directory into the container to reuse caches and models (recommended)
data-juicer:<version_tag> \ # image to run
dj-process --config /path/to/config.yaml # similar data processing commands
- Or enter into the running container and run commands in editable mode:
# start the container
docker run -dit \ # run the container in the background
--rm \
--name dj \
-v <host_data_path>:<image_data_path> \
-v ~/.cache/:/root/.cache/ \
data-juicer:latest /bin/bash
# enter into this container and then you can use data-juicer in editable mode
docker exec -it <container_id> bash
- Overview | 概览
- Operator Zoo | 算子库
- Configs | 配置系统
- Developer Guide | 开发者指南
- Dedicated Toolkits | 专用工具箱
- Third-parties (LLM Ecosystems) | 第三方库(大语言模型生态)
- API references
- Recipes for data process in BLOOM
- Recipes for data process in RedPajama
- Refined recipes for pre-training data
- Refined recipes for fine-tuning data
- Introduction to Data-Juicer [ModelScope] [HuggingFace]
- Data Visualization:
- Basic Statistics [ModelScope] [HuggingFace]
- Lexical Diversity [ModelScope] [HuggingFace]
- Operator Effect [ModelScope] [HuggingFace]
- Data Processing:
- Scientific Literature (e.g. arXiv) [ModelScope] [HuggingFace]
- Programming Code (e.g. TheStack) [ModelScope] [HuggingFace]
- Chinese Instruction Data (e.g. Alpaca-CoT) [ModelScope] [HuggingFace]
- Tool Pool:
- Dataset Splitting by Language [ModelScope] [HuggingFace]
- Quality Classifier for CommonCrawl [ModelScope] [HuggingFace]
- Auto Evaluation on HELM [ModelScope] [HuggingFace]
- Data Sampling and Mixture [ModelScope] [HuggingFace]
- Data Processing Loop [ModelScope] [HuggingFace]
- Data Processing HPO [ModelScope] [HuggingFace]
Data-Juicer is released under Apache License 2.0.
We are in a rapidly developing field and greatly welcome contributions of new features, bug fixes and better documentations. Please refer to How-to Guide for Developers.
Welcome to join our Slack channel, or DingDing group for discussion.
Data-Juicer is used across various LLM products and research initiatives, including industrial LLMs from Alibaba Cloud's Tongyi, such as Dianjin for financial analysis, and Zhiwen for reading assistant, as well as the Alibaba Cloud's platform for AI (PAI). We look forward to more of your experience, suggestions and discussions for collaboration!
Data-Juicer thanks and refers to several community projects, such as Huggingface-Datasets, Bloom, RedPajama, Pile, Alpaca-Cot, Megatron-LM, DeepSpeed, Arrow, Ray, Beam, LM-Harness, HELM, ....
If you find our work useful for your research or development, please kindly cite the following paper.
@misc{chen2023datajuicer,
title={Data-Juicer: A One-Stop Data Processing System for Large Language Models},
author={Daoyuan Chen and Yilun Huang and Zhijian Ma and Hesen Chen and Xuchen Pan and Ce Ge and Dawei Gao and Yuexiang Xie and Zhaoyang Liu and Jinyang Gao and Yaliang Li and Bolin Ding and Jingren Zhou},
year={2023},
eprint={2309.02033},
archivePrefix={arXiv},
primaryClass={cs.LG}
}