Skip to content

Code for the paper "Contrastive Clustering" (AAAI 2021)

License

Notifications You must be signed in to change notification settings

floricaaa/Contrastive-Clustering

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

15 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Contrastive Clustering (CC)

This is the code for the paper "Contrastive Clustering" (AAAI 2021)

Dependency

  • python>=3.7
  • pytorch>=1.6.0
  • torchvision>=0.8.1
  • munkres>=1.1.4
  • numpy>=1.19.2
  • opencv-python>=4.4.0.46
  • pyyaml>=5.3.1
  • scikit-learn>=0.23.2

Usage

Configuration

There is a configuration file "config/config.yaml", where one can edit both the training and test options.

Training

After setting the configuration, to start training, simply run

python train.py

Since the traning strategy for STL-10 is slightly different from others (unlabeled data is used on ICH only while training and test split are used on both ICH and CCH), to start training on STL-10, run

python train_STL10.py

Test

Once the training is completed, there will be a saved model in the "model_path" specified in the configuration file. To test the trained model, run

python cluster.py

We uploaded the pretrained model which achieves the performance reported in the paper to the "save" folder for reference.

Dataset

CIFAR-10, CIFAR-100, STL-10 will be automatically downloaded by Pytorch. Tiny-ImageNet can be downloaded from http://cs231n.stanford.edu/tiny-imagenet-200.zip. For ImageNet-10 and ImageNet-dogs, we provided their description in the "dataset" folder.

Citation

If you find CC useful in your research, please consider citing:

@article{li2020contrastive,
  title={Contrastive Clustering},
  author={Li, Yunfan and Hu, Peng and Liu, Zitao and Peng, Dezhong and Zhou, Joey Tianyi and Peng, Xi},
  journal={arXiv preprint arXiv:2009.09687},
  year={2020}
}

About

Code for the paper "Contrastive Clustering" (AAAI 2021)

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%