forked from Yunfan-Li/Contrastive-Clustering
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcluster.py
149 lines (142 loc) · 5.26 KB
/
cluster.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import os
import argparse
import torch
import torchvision
import numpy as np
from utils import yaml_config_hook
from modules import resnet, network, transform
from evaluation import evaluation
from torch.utils import data
import copy
def inference(loader, model, device):
model.eval()
feature_vector = []
labels_vector = []
for step, (x, y) in enumerate(loader):
x = x.to(device)
with torch.no_grad():
c = model.forward_cluster(x)
c = c.detach()
feature_vector.extend(c.cpu().detach().numpy())
labels_vector.extend(y.numpy())
if step % 20 == 0:
print(f"Step [{step}/{len(loader)}]\t Computing features...")
feature_vector = np.array(feature_vector)
labels_vector = np.array(labels_vector)
print("Features shape {}".format(feature_vector.shape))
return feature_vector, labels_vector
if __name__ == "__main__":
parser = argparse.ArgumentParser()
config = yaml_config_hook("./config/config.yaml")
for k, v in config.items():
parser.add_argument(f"--{k}", default=v, type=type(v))
args = parser.parse_args()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if args.dataset == "CIFAR-10":
train_dataset = torchvision.datasets.CIFAR10(
root=args.dataset_dir,
train=True,
download=True,
transform=transform.Transforms(size=args.image_size).test_transform,
)
test_dataset = torchvision.datasets.CIFAR10(
root=args.dataset_dir,
train=False,
download=True,
transform=transform.Transforms(size=args.image_size).test_transform,
)
dataset = data.ConcatDataset([train_dataset, test_dataset])
class_num = 10
elif args.dataset == "CIFAR-100":
train_dataset = torchvision.datasets.CIFAR100(
root=args.dataset_dir,
download=True,
train=True,
transform=transform.Transforms(size=args.image_size).test_transform,
)
test_dataset = torchvision.datasets.CIFAR100(
root=args.dataset_dir,
download=True,
train=False,
transform=transform.Transforms(size=args.image_size).test_transform,
)
dataset = data.ConcatDataset([train_dataset, test_dataset])
class_num = 20
elif args.dataset == "STL-10":
train_dataset = torchvision.datasets.STL10(
root=args.dataset_dir,
split="train",
download=True,
transform=transform.Transforms(size=args.image_size).test_transform,
)
test_dataset = torchvision.datasets.STL10(
root=args.dataset_dir,
split="test",
download=True,
transform=transform.Transforms(size=args.image_size).test_transform,
)
dataset = torch.utils.data.ConcatDataset([train_dataset, test_dataset])
class_num = 10
elif args.dataset == "ImageNet-10":
dataset = torchvision.datasets.ImageFolder(
root='datasets/imagenet-10',
transform=transform.Transforms(size=args.image_size).test_transform,
)
class_num = 10
elif args.dataset == "ImageNet-dogs":
dataset = torchvision.datasets.ImageFolder(
root='datasets/imagenet-dogs',
transform=transform.Transforms(size=args.image_size).test_transform,
)
class_num = 15
elif args.dataset == "tiny-ImageNet":
dataset = torchvision.datasets.ImageFolder(
root='datasets/tiny-imagenet-200/train',
transform=transform.Transforms(size=args.image_size).test_transform,
)
class_num = 200
else:
raise NotImplementedError
data_loader = torch.utils.data.DataLoader(
dataset,
batch_size=500,
shuffle=False,
drop_last=False,
num_workers=args.workers,
)
res = resnet.get_resnet(args.resnet)
model = network.Network(res, args.feature_dim, class_num)
model_fp = os.path.join(args.model_path, "checkpoint_{}.tar".format(args.start_epoch))
model.load_state_dict(torch.load(model_fp, map_location=device.type)['net'])
model.to(device)
print("### Creating features from model ###")
X, Y = inference(data_loader, model, device)
if args.dataset == "CIFAR-100": # super-class
super_label = [
[72, 4, 95, 30, 55],
[73, 32, 67, 91, 1],
[92, 70, 82, 54, 62],
[16, 61, 9, 10, 28],
[51, 0, 53, 57, 83],
[40, 39, 22, 87, 86],
[20, 25, 94, 84, 5],
[14, 24, 6, 7, 18],
[43, 97, 42, 3, 88],
[37, 17, 76, 12, 68],
[49, 33, 71, 23, 60],
[15, 21, 19, 31, 38],
[75, 63, 66, 64, 34],
[77, 26, 45, 99, 79],
[11, 2, 35, 46, 98],
[29, 93, 27, 78, 44],
[65, 50, 74, 36, 80],
[56, 52, 47, 59, 96],
[8, 58, 90, 13, 48],
[81, 69, 41, 89, 85],
]
Y_copy = copy.copy(Y)
for i in range(20):
for j in super_label[i]:
Y[Y_copy == j] = i
nmi, ari, f, acc = evaluation.evaluate(Y, X)
print('NMI = {:.4f} ARI = {:.4f} F = {:.4f} ACC = {:.4f}'.format(nmi, ari, f, acc))