Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Cleanup H(div, S) elements #98

Merged
merged 30 commits into from
Nov 6, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
30 commits
Select commit Hold shift + click to select a range
2f418ec
implementation of Hu-Zhang element thus far
FAznaran Mar 19, 2024
d184ff4
Switch to lowest degree = 3
FAznaran Mar 19, 2024
eefd262
More on lowest degree
FAznaran Mar 20, 2024
009d1bb
Merge remote-tracking branch 'origin/master' into faznaran/hu-zhang
FAznaran Mar 26, 2024
f545c52
Let degree = p. Makes much easier to read
FAznaran Mar 27, 2024
89181e4
Nothing but replace 3 with p£
FAznaran May 26, 2024
b0f45c6
A higher-degree space produced
FAznaran May 27, 2024
279b9b9
Subtly different internal dof: moment against tt^T, NOT t-t moment.
FAznaran May 27, 2024
917d136
Alternative t-t edge dofs
FAznaran Jun 11, 2024
2bf2072
Temporary commit while some form of HZ appears to be converging at th…
FAznaran Jun 12, 2024
753a83d
Alternative interior-bubble DOFs: evaluation at interior nodes
FAznaran Jun 12, 2024
4a964f9
Merge branch 'master' into faznaran/hu-zhang
pbrubeck Oct 8, 2024
f8e12f9
Cleanup Hu-Zhang
pbrubeck Oct 8, 2024
da80ee4
merge conflict
pbrubeck Oct 25, 2024
4bd3303
Fix point variant
pbrubeck Oct 25, 2024
66fcb22
Fix HZ integral variant, clean up AW
pbrubeck Oct 26, 2024
c800a5d
cache quadrature rules
pbrubeck Oct 26, 2024
8bf3708
docs
pbrubeck Oct 26, 2024
417466e
Fix quadrature degrees, cleanup MTW
pbrubeck Oct 26, 2024
7397100
delete unused class
pbrubeck Oct 26, 2024
6830ed9
More cleanup
pbrubeck Oct 27, 2024
2075f9b
fix scale
pbrubeck Oct 27, 2024
053895f
fix JM dof ordering
pbrubeck Oct 27, 2024
ae5d811
new interior dofs
pbrubeck Oct 27, 2024
b9bb66a
Merge branch 'pbrubeck/h1curl' into pbrubeck/hu-zhang
pbrubeck Oct 28, 2024
ed5b01e
Merge branch 'pbrubeck/h1curl' into pbrubeck/hu-zhang
pbrubeck Oct 29, 2024
a46bd36
address review comments
pbrubeck Oct 29, 2024
98b86b3
cleanup MTW
pbrubeck Nov 1, 2024
d8c61e1
This is a FunctionalFactory
pbrubeck Nov 1, 2024
d25817b
Implement a traceless H(curl div) element (#69)
pbrubeck Nov 6, 2024
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 6 additions & 0 deletions FIAT/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -48,9 +48,12 @@
from FIAT.raviart_thomas import RaviartThomas
from FIAT.crouzeix_raviart import CrouzeixRaviart
from FIAT.regge import Regge
from FIAT.gopalakrishnan_lederer_schoberl import GopalakrishnanLedererSchoberlFirstKind
from FIAT.gopalakrishnan_lederer_schoberl import GopalakrishnanLedererSchoberlSecondKind
from FIAT.hellan_herrmann_johnson import HellanHerrmannJohnson
from FIAT.arnold_winther import ArnoldWinther
from FIAT.arnold_winther import ArnoldWintherNC
from FIAT.hu_zhang import HuZhang
from FIAT.mardal_tai_winther import MardalTaiWinther
from FIAT.bubble import Bubble, FacetBubble
from FIAT.tensor_product import TensorProductElement
Expand Down Expand Up @@ -107,8 +110,11 @@
"BrokenElement": DiscontinuousElement,
"HDiv Trace": HDivTrace,
"Hellan-Herrmann-Johnson": HellanHerrmannJohnson,
"Gopalakrishnan-Lederer-Schoberl 1st kind": GopalakrishnanLedererSchoberlFirstKind,
"Gopalakrishnan-Lederer-Schoberl 2nd kind": GopalakrishnanLedererSchoberlSecondKind,
"Conforming Arnold-Winther": ArnoldWinther,
"Nonconforming Arnold-Winther": ArnoldWintherNC,
"Hu-Zhang": HuZhang,
"Mardal-Tai-Winther": MardalTaiWinther}

# List of extra elements
Expand Down
228 changes: 98 additions & 130 deletions FIAT/arnold_winther.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,157 +9,125 @@
# SPDX-License-Identifier: LGPL-3.0-or-later


from FIAT.finite_element import CiarletElement
from FIAT.dual_set import DualSet
from FIAT.polynomial_set import ONSymTensorPolynomialSet, ONPolynomialSet
from FIAT.functional import (
PointwiseInnerProductEvaluation as InnerProduct,
FrobeniusIntegralMoment as FIM,
IntegralMomentOfTensorDivergence,
IntegralLegendreNormalNormalMoment,
IntegralLegendreNormalTangentialMoment)

from FIAT.quadrature import make_quadrature
from FIAT import finite_element, dual_set, polynomial_set
from FIAT.reference_element import TRIANGLE
from FIAT.quadrature_schemes import create_quadrature
from FIAT.functional import (ComponentPointEvaluation,
TensorBidirectionalIntegralMoment,
IntegralMomentOfTensorDivergence,
IntegralLegendreNormalNormalMoment,
IntegralLegendreNormalTangentialMoment)

import numpy


class ArnoldWintherNCDual(DualSet):
def __init__(self, cell, degree=2):
if not degree == 2:
raise ValueError("Nonconforming Arnold-Winther elements are"
"only defined for degree 2.")
dofs = []
dof_ids = {}
dof_ids[0] = {0: [], 1: [], 2: []}
dof_ids[1] = {0: [], 1: [], 2: []}
dof_ids[2] = {0: []}
class ArnoldWintherNCDual(dual_set.DualSet):
def __init__(self, ref_el, degree=2):
if degree != 2:
raise ValueError("Nonconforming Arnold-Winther elements are only defined for degree 2.")
top = ref_el.get_topology()
sd = ref_el.get_spatial_dimension()
entity_ids = {dim: {entity: [] for entity in sorted(top[dim])} for dim in sorted(top)}
nodes = []

dof_cur = 0
# no vertex dofs
# proper edge dofs now (not the contraints)
# moments of normal . sigma against constants and linears.
for entity_id in range(3): # a triangle has 3 edges
for order in (0, 1):
dofs += [IntegralLegendreNormalNormalMoment(cell, entity_id, order, 6),
IntegralLegendreNormalTangentialMoment(cell, entity_id, order, 6)]
dof_ids[1][entity_id] = list(range(dof_cur, dof_cur+4))
dof_cur += 4
# edge dofs: bidirectional nn and nt moments against P1.
qdegree = degree + 2
for entity in sorted(top[1]):
cur = len(nodes)
for order in range(2):
nodes.append(IntegralLegendreNormalNormalMoment(ref_el, entity, order, qdegree))
nodes.append(IntegralLegendreNormalTangentialMoment(ref_el, entity, order, qdegree))
entity_ids[1][entity].extend(range(cur, len(nodes)))

# internal dofs: constant moments of three unique components
Q = make_quadrature(cell, 2)

e1 = numpy.array([1.0, 0.0]) # euclidean basis 1
e2 = numpy.array([0.0, 1.0]) # euclidean basis 2
basis = [(e1, e1), (e1, e2), (e2, e2)] # basis for symmetric matrices
for (v1, v2) in basis:
v1v2t = numpy.outer(v1, v2)
fatqp = numpy.zeros((2, 2, len(Q.pts)))
for i, y in enumerate(v1v2t):
for j, x in enumerate(y):
for k in range(len(Q.pts)):
fatqp[i, j, k] = x
dofs.append(FIM(cell, Q, fatqp))
dof_ids[2][0] = list(range(dof_cur, dof_cur + 3))
dof_cur += 3
cur = len(nodes)
n = list(map(ref_el.compute_scaled_normal, sorted(top[sd-1])))
Q = create_quadrature(ref_el, degree)
phi = numpy.full(Q.get_weights().shape, 1/ref_el.volume())
nodes.extend(TensorBidirectionalIntegralMoment(ref_el, n[i+1], n[j+1], Q, phi)
for i in range(sd) for j in range(i, sd))
entity_ids[2][0].extend(range(cur, len(nodes)))

# put the constraint dofs last.
for entity_id in range(3):
dof = IntegralLegendreNormalNormalMoment(cell, entity_id, 2, 6)
dofs.append(dof)
dof_ids[1][entity_id].append(dof_cur)
dof_cur += 1
for entity in sorted(top[1]):
cur = len(nodes)
nodes.append(IntegralLegendreNormalNormalMoment(ref_el, entity, 2, qdegree))
entity_ids[1][entity].append(cur)

super().__init__(dofs, cell, dof_ids)
super().__init__(nodes, ref_el, entity_ids)


class ArnoldWintherNC(CiarletElement):
class ArnoldWintherNC(finite_element.CiarletElement):
"""The definition of the nonconforming Arnold-Winther element.
"""
def __init__(self, cell, degree=2):
assert degree == 2, "Only defined for degree 2"
Ps = ONSymTensorPolynomialSet(cell, degree)
Ls = ArnoldWintherNCDual(cell, degree)
def __init__(self, ref_el, degree=2):
if ref_el.shape != TRIANGLE:
raise ValueError(f"{type(self).__name__} only defined on triangles")
Ps = polynomial_set.ONSymTensorPolynomialSet(ref_el, degree)
Ls = ArnoldWintherNCDual(ref_el, degree)
formdegree = ref_el.get_spatial_dimension() - 1
mapping = "double contravariant piola"
super().__init__(Ps, Ls, degree, formdegree, mapping=mapping)

super().__init__(Ps, Ls, degree, mapping=mapping)


class ArnoldWintherDual(DualSet):
def __init__(self, cell, degree=3):
if not degree == 3:
raise ValueError("Arnold-Winther elements are"
"only defined for degree 3.")
dofs = []
dof_ids = {}
dof_ids[0] = {0: [], 1: [], 2: []}
dof_ids[1] = {0: [], 1: [], 2: []}
dof_ids[2] = {0: []}

dof_cur = 0
class ArnoldWintherDual(dual_set.DualSet):
def __init__(self, ref_el, degree=3):
if degree != 3:
raise ValueError("Arnold-Winther elements are only defined for degree 3.")
top = ref_el.get_topology()
sd = ref_el.get_spatial_dimension()
shp = (sd, sd)
entity_ids = {dim: {entity: [] for entity in sorted(top[dim])} for dim in sorted(top)}
nodes = []

# vertex dofs
vs = cell.get_vertices()
e1 = numpy.array([1.0, 0.0])
e2 = numpy.array([0.0, 1.0])
basis = [(e1, e1), (e1, e2), (e2, e2)]

dof_cur = 0

for entity_id in range(3):
node = tuple(vs[entity_id])
for (v1, v2) in basis:
dofs.append(InnerProduct(cell, v1, v2, node))
dof_ids[0][entity_id] = list(range(dof_cur, dof_cur + 3))
dof_cur += 3

# edge dofs now
# moments of normal . sigma against constants and linears.
for entity_id in range(3):
for order in (0, 1):
dofs += [IntegralLegendreNormalNormalMoment(cell, entity_id, order, 6),
IntegralLegendreNormalTangentialMoment(cell, entity_id, order, 6)]
dof_ids[1][entity_id] = list(range(dof_cur, dof_cur+4))
dof_cur += 4

# internal dofs: constant moments of three unique components
Q = make_quadrature(cell, 3)

e1 = numpy.array([1.0, 0.0]) # euclidean basis 1
e2 = numpy.array([0.0, 1.0]) # euclidean basis 2
basis = [(e1, e1), (e1, e2), (e2, e2)] # basis for symmetric matrices
for (v1, v2) in basis:
v1v2t = numpy.outer(v1, v2)
fatqp = numpy.zeros((2, 2, len(Q.pts)))
for k in range(len(Q.pts)):
fatqp[:, :, k] = v1v2t
dofs.append(FIM(cell, Q, fatqp))
dof_ids[2][0] = list(range(dof_cur, dof_cur + 3))
dof_cur += 3

# Constraint dofs

Q = make_quadrature(cell, 5)

onp = ONPolynomialSet(cell, 2, (2,))
pts = Q.get_points()
onpvals = onp.tabulate(pts)[0, 0]

for i in list(range(3, 6)) + list(range(9, 12)):
dofs.append(IntegralMomentOfTensorDivergence(cell, Q,
onpvals[i, :, :]))

dof_ids[2][0] += list(range(dof_cur, dof_cur+6))

super().__init__(dofs, cell, dof_ids)


class ArnoldWinther(CiarletElement):
for v in sorted(top[0]):
cur = len(nodes)
pt, = ref_el.make_points(0, v, degree)
nodes.extend(ComponentPointEvaluation(ref_el, (i, j), shp, pt)
for i in range(sd) for j in range(i, sd))
entity_ids[0][v].extend(range(cur, len(nodes)))

# edge dofs: bidirectional nn and nt moments against P_{k-2}
max_order = degree - 2
qdegree = degree + max_order
for entity in sorted(top[1]):
cur = len(nodes)
for order in range(max_order+1):
nodes.append(IntegralLegendreNormalNormalMoment(ref_el, entity, order, qdegree))
nodes.append(IntegralLegendreNormalTangentialMoment(ref_el, entity, order, qdegree))
entity_ids[1][entity].extend(range(cur, len(nodes)))

# internal dofs: moments of unique components against P_{k-3}
n = list(map(ref_el.compute_scaled_normal, sorted(top[sd-1])))
Q = create_quadrature(ref_el, 2*(degree-1))
P = polynomial_set.ONPolynomialSet(ref_el, degree-3, scale="L2 piola")
phis = P.tabulate(Q.get_points())[(0,)*sd]
nodes.extend(TensorBidirectionalIntegralMoment(ref_el, n[i+1], n[j+1], Q, phi)
for phi in phis for i in range(sd) for j in range(i, sd))

# constraint dofs: moments of divergence against P_{k-1} \ P_{k-2}
P = polynomial_set.ONPolynomialSet(ref_el, degree-1, shape=(sd,))
dimPkm1 = P.expansion_set.get_num_members(degree-1)
dimPkm2 = P.expansion_set.get_num_members(degree-2)
PH = P.take([i + j * dimPkm1 for j in range(sd) for i in range(dimPkm2, dimPkm1)])
phis = PH.tabulate(Q.get_points())[(0,)*sd]
nodes.extend(IntegralMomentOfTensorDivergence(ref_el, Q, phi) for phi in phis)

entity_ids[2][0].extend(range(cur, len(nodes)))
super().__init__(nodes, ref_el, entity_ids)


class ArnoldWinther(finite_element.CiarletElement):
"""The definition of the conforming Arnold-Winther element.
"""
def __init__(self, cell, degree=3):
assert degree == 3, "Only defined for degree 3"
Ps = ONSymTensorPolynomialSet(cell, degree)
Ls = ArnoldWintherDual(cell, degree)
def __init__(self, ref_el, degree=3):
if ref_el.shape != TRIANGLE:
raise ValueError(f"{type(self).__name__} only defined on triangles")
Ps = polynomial_set.ONSymTensorPolynomialSet(ref_el, degree)
Ls = ArnoldWintherDual(ref_el, degree)
formdegree = ref_el.get_spatial_dimension() - 1
mapping = "double contravariant piola"
super().__init__(Ps, Ls, degree, mapping=mapping)
super().__init__(Ps, Ls, degree, formdegree, mapping=mapping)
13 changes: 7 additions & 6 deletions FIAT/expansions.py
Original file line number Diff line number Diff line change
Expand Up @@ -279,16 +279,19 @@ def __init__(self, ref_el, scale=None, variant=None):
self._dmats_cache = {}
self._cell_node_map_cache = {}

def get_scale(self, cell=0):
def get_scale(self, n, cell=0):
scale = self.scale
sd = self.ref_el.get_spatial_dimension()
if isinstance(scale, str):
sd = self.ref_el.get_spatial_dimension()
vol = self.ref_el.volume_of_subcomplex(sd, cell)
scale = scale.lower()
if scale == "orthonormal":
scale = math.sqrt(1.0 / vol)
elif scale == "l2 piola":
scale = 1.0 / vol
elif n == 0 and sd > 1 and len(self.affine_mappings) == 1:
# return 1 for n=0 to make regression tests pass
scale = 1
return scale

def get_num_members(self, n):
Expand All @@ -310,9 +313,7 @@ def _tabulate_on_cell(self, n, pts, order=0, cell=0, direction=None):
ref_pts = numpy.add(numpy.dot(pts, A.T), b).T
Jinv = A if direction is None else numpy.dot(A, direction)[:, None]
sd = self.ref_el.get_spatial_dimension()

# Always return 1 for n=0 to make regression tests pass
scale = 1.0 if n == 0 and len(self.affine_mappings) == 1 else self.get_scale(cell=cell)
scale = self.get_scale(n, cell=cell)
phi = dubiner_recurrence(sd, n, lorder, ref_pts, Jinv,
scale, variant=self.variant)
if self.continuity == "C0":
Expand Down Expand Up @@ -549,7 +550,7 @@ def _tabulate_on_cell(self, n, pts, order=0, cell=0, direction=None):
Jinv = A[0, 0] if direction is None else numpy.dot(A, direction)
xs = numpy.add(numpy.dot(pts, A.T), b)
results = {}
scale = self.get_scale(cell=cell) * numpy.sqrt(2 * numpy.arange(n+1) + 1)
scale = self.get_scale(n, cell=cell) * numpy.sqrt(2 * numpy.arange(n+1) + 1)
for k in range(order+1):
v = numpy.zeros((n + 1, len(xs)), xs.dtype)
if n >= k:
Expand Down
6 changes: 3 additions & 3 deletions FIAT/functional.py
Original file line number Diff line number Diff line change
Expand Up @@ -631,13 +631,13 @@ class TensorBidirectionalIntegralMoment(FrobeniusIntegralMoment):
field, f a function tabulated at points, and v,w be vectors. This implements the evaluation
\int v^T u(x) w f(x).
Clearly v^iu_{ij}w^j = u_{ij}v^iw^j. Thus the value can be computed
from the Frobenius inner product of u with wv^T. This gives the
from the Frobenius inner product of u with vw^T. This gives the
correct weights.
"""

def __init__(self, ref_el, v, w, Q, f_at_qpts):
wvT = numpy.outer(w, v)
F_at_qpts = numpy.multiply(wvT[..., None], f_at_qpts)
vwT = numpy.outer(v, w)
F_at_qpts = numpy.multiply(vwT[..., None], f_at_qpts)
super().__init__(ref_el, Q, F_at_qpts, "TensorBidirectionalMomentInnerProductEvaluation")


Expand Down
Loading