- 将 Weight data 类型转换和求绝对值: A [C, H, W]
- 计算 F(A)=∑i=1C |Ai| 沿通道方向绝对值之和
- 计算 ||F(A)||2 二范数的平方
- 计算 F(A) / ||F(A)||2
- 计算 F(Aj) / ||F(Aj)||2 和 gamma = ∑ | F(A) / ||F(A)||2 - F(Aj) / ||F(Aj)||2 |
- Dataset CIFAR10
- one minimum iterator
- one data, one batch of iterator
- Model VGG19_BN
- pretrained ImageNet VGG19 Model
- define empty VGG19 Model
- initialize model weights
- load weight data
- the first conv2d converting of model
- find BatchNorm2d & nn.ReLU converting
- Activation-based Gramma
- batch size activation-based gamma
- Prune
- number of channels
- all channels' gamma
- threshold
- prune
- 损失函数简介
- 损失函数的本质
- 损失函数实例
- list 转成 array 实现减法
- np.reshape() 与 np.resize() 是不同的
- vars() 提供打印变量的所有参数
- gt() 大于操作,返回值为 True or False
- ng.argwhere(x > 0) 返回x中大于0的数组元组的索引
- squeeze() 与 unsqueeze()
- nn.ReLU()
- linalg.norm() 与 nn.functional.normalize() 的区别
- Pytorch Variable
0.1 cuda is available()
0.2 pytorch version
- Pretrained VGG19 Model with Batch Normalization
- VGG19 Weight
- VGG19 Convolution Layer
- Pretrained VGG19 Model without Batch Normalization
- features[0]: Conv2d
- features[2]: Conv2d
- Prune Conv2d Bias
- Prune Conv2d Weight