Skip to content

Latest commit

 

History

History
69 lines (60 loc) · 2.8 KB

README.md

File metadata and controls

69 lines (60 loc) · 2.8 KB

PearPigLin's Jupyter Notebook

Attention-based Conv2d Pruning

  1. 将 Weight data 类型转换和求绝对值: A [C, H, W]
  2. 计算 F(A)=∑i=1C |Ai| 沿通道方向绝对值之和
  3. 计算 ||F(A)||2 二范数的平方
  4. 计算 F(A) / ||F(A)||2
  5. 计算 F(Aj) / ||F(Aj)||2gamma = ∑ | F(A) / ||F(A)||2 - F(Aj) / ||F(Aj)||2 |

Attention-based Feature Pruning

  1. Dataset CIFAR10
    1. one minimum iterator
    2. one data, one batch of iterator
  2. Model VGG19_BN
    1. pretrained ImageNet VGG19 Model
    2. define empty VGG19 Model
    3. initialize model weights
    4. load weight data
    5. the first conv2d converting of model
    6. find BatchNorm2d & nn.ReLU converting
  3. Activation-based Gramma
    1. batch size activation-based gamma
  4. Prune
    1. number of channels
    2. all channels' gamma
    3. threshold
    4. prune

Pytorch Loss Function

  1. 损失函数简介
  2. 损失函数的本质
  3. 损失函数实例
    1. 绝对值损失
    2. 平方损失
    3. 对数损失

Pytorch More Ways

  1. list 转成 array 实现减法
  2. np.reshape() 与 np.resize() 是不同的
  3. vars() 提供打印变量的所有参数
  4. gt() 大于操作,返回值为 True or False
  5. ng.argwhere(x > 0) 返回x中大于0的数组元组的索引
  6. squeeze() 与 unsqueeze()
  7. nn.ReLU()
  8. linalg.norm() 与 nn.functional.normalize() 的区别
  9. Pytorch Variable

Pytorch Pretrained VGG19

0.1 cuda is available()

0.2 pytorch version

  1. Pretrained VGG19 Model with Batch Normalization
    • VGG19 Weight
    • VGG19 Convolution Layer
  2. Pretrained VGG19 Model without Batch Normalization
    • features[0]: Conv2d
    • features[2]: Conv2d
    • Prune Conv2d Bias
    • Prune Conv2d Weight