Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add test for tags #67

Merged
merged 11 commits into from
Dec 8, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 5 additions & 1 deletion autointent/modules/prediction/_adaptive.py
Original file line number Diff line number Diff line change
Expand Up @@ -128,7 +128,11 @@ def dump(self, path: str) -> None:
"""
dump_dir = Path(path)

metadata = AdaptivePredictorDumpMetadata(r=self._r, tags=self.tags, n_classes=self.n_classes)
metadata = AdaptivePredictorDumpMetadata(
r=self._r,
tags=[t.model_dump() for t in self.tags] if self.tags else None, # type: ignore[misc]
n_classes=self.n_classes,
)

with (dump_dir / self.metadata_dict_name).open("w") as file:
json.dump(metadata, file, indent=4)
Expand Down
7 changes: 3 additions & 4 deletions autointent/modules/prediction/_threshold.py
Original file line number Diff line number Diff line change
Expand Up @@ -45,9 +45,6 @@ def __init__(
Initialize threshold predictor.

:param thresh: Threshold for the scores, shape (n_classes,) or float
:param multilabel: If multilabel classification, default False
:param n_classes: Number of classes, default None
:param tags: Tags for predictions, default None
"""
self.thresh = thresh

Expand Down Expand Up @@ -119,9 +116,11 @@ def dump(self, path: str) -> None:
)

dump_dir = Path(path)
metadata_json = self.metadata
metadata_json["tags"] = [tag.model_dump() for tag in metadata_json["tags"]] if metadata_json["tags"] else None # type: ignore[misc]

with (dump_dir / self.metadata_dict_name).open("w") as file:
json.dump(self.metadata, file, indent=4)
json.dump(metadata_json, file, indent=4)

def load(self, path: str) -> None:
"""
Expand Down
10 changes: 7 additions & 3 deletions autointent/modules/prediction/_tunable.py
Original file line number Diff line number Diff line change
Expand Up @@ -123,9 +123,11 @@ def dump(self, path: str) -> None:
)

dump_dir = Path(path)
metadata_json = self.metadata
metadata_json["tags"] = [tag.model_dump() for tag in metadata_json["tags"]] if metadata_json["tags"] else None # type: ignore[misc]

with (dump_dir / self.metadata_dict_name).open("w") as file:
json.dump(self.metadata, file, indent=4)
json.dump(metadata_json, file, indent=4)

def load(self, path: str) -> None:
"""
Expand All @@ -136,9 +138,11 @@ def load(self, path: str) -> None:
dump_dir = Path(path)

with (dump_dir / self.metadata_dict_name).open() as file:
metadata: TunablePredictorDumpMetadata = json.load(file)
metadata = json.load(file)

self.metadata = metadata
metadata["tags"] = [Tag(**tag) for tag in metadata["tags"]] if metadata["tags"] else None

self.metadata: TunablePredictorDumpMetadata = metadata
self.thresh = np.array(metadata["thresh"])
self.multilabel = metadata["multilabel"]
self.tags = metadata["tags"]
Expand Down
42 changes: 25 additions & 17 deletions autointent/modules/prediction/_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,23 +21,31 @@ def apply_tags(labels: npt.NDArray[Any], scores: npt.NDArray[Any], tags: list[Ta
:param tags: List of `Tag` objects, where each tag specifies mutually exclusive intent IDs.
:return: Adjusted array of shape (n_samples, n_classes) with binary labels.
"""
n_samples, _ = labels.shape
res = np.copy(labels)

for i in range(n_samples):
sample_labels = labels[i].astype(bool)
sample_scores = scores[i]

for tag in tags:
if any(sample_labels[idx] for idx in tag.intent_ids):
# Find the index of the class with the highest score among the tagged indices
max_score_index = max(tag.intent_ids, key=lambda idx: sample_scores[idx])
# Set all other tagged indices to 0 in the result
for idx in tag.intent_ids:
if idx != max_score_index:
res[i, idx] = 0

return res
labels = labels.copy()

for tag in tags:
intent_ids = tag.intent_ids

labels_sub = labels[:, intent_ids]
scores_sub = scores[:, intent_ids]

assigned = labels_sub == 1
num_assigned = assigned.sum(axis=1)

assigned_scores = np.where(assigned, scores_sub, -np.inf)

samples_to_adjust = np.where(num_assigned > 1)[0]

if samples_to_adjust.size > 0:
assigned_scores_adjust = assigned_scores[samples_to_adjust, :]
idx_max_adjust = assigned_scores_adjust.argmax(axis=1)

labels_sub[samples_to_adjust, :] = 0
labels_sub[samples_to_adjust, idx_max_adjust] = 1

labels[:, intent_ids] = labels_sub

return labels


class WrongClassificationError(Exception):
Expand Down
2 changes: 1 addition & 1 deletion tests/assets/configs/multiclass.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -29,7 +29,7 @@
metric: prediction_accuracy
search_space:
- module_type: threshold
thresh: [0.5, [0.5, 0.5, 0.5]]
thresh: [0.5, [0.5, 0.5, 0.5, 0.5]]
- module_type: tunable
- module_type: argmax
- module_type: jinoos
2 changes: 1 addition & 1 deletion tests/assets/configs/multilabel.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -25,6 +25,6 @@
metric: prediction_accuracy
search_space:
- module_type: threshold
thresh: [0.5, [0.5, 0.5, 0.5]]
thresh: [0.5, [0.5, 0.5, 0.5, 0.5]]
- module_type: tunable
- module_type: adaptive
121 changes: 117 additions & 4 deletions tests/assets/data/clinc_subset.json
Original file line number Diff line number Diff line change
Expand Up @@ -14,6 +14,14 @@
"id": 2,
"name": "alarm",
"description": "User wants to set or manage an alarm."
},
{
"id": 3,
"name": "alarm reservation",
"tags": ["alarm", "reservation"],
"regexp_full_match": [],
"regexp_partial_match": [],
"description": "User wants to set or manage an alarm second time."
}
],
"train": [
Expand Down Expand Up @@ -138,20 +146,125 @@
"label": 2
},
{
"utterance": "how much is an overdraft fee for bank"
"utterance": "how much is an overdraft fee for bank",
"label": 3
},
{
"utterance": "where is the dipstick",
"label": 3
},
{
"utterance": "where is the dipstick",
"label": 3
},
{
"utterance": "where is the dipstick",
"label": 3
},
{
"utterance": "where is the dipstick",
"label": 3
},
{
"utterance": "where is the dipstick",
"label": 3
},
{
"utterance": "where is the dipstick",
"label": 3
},
{
"utterance": "how much is 1 share of aapl"
},
{
"utterance": "how is glue made"
},
{
"utterance": "how much is 1 share of aapl"
},
{
"utterance": "how is glue made"
},
{
"utterance": "how much is 1 share of aapl"
},
{
"utterance": "how is glue made"
},
{
"utterance": "how much is 1 share of aapl"
},
{
"utterance": "how is glue made"
}
],
"test": [
{
"utterance": "can i make a reservation for redrobin",
"label": 0
},
{
"utterance": "does redrobin do reservations",
"label": 0
},
{
"utterance": "does acero in maplewood allow reservations",
"label": 0
},
{
"utterance": "i think my account is blocked",
"label": 1
},
{
"utterance": "why is my bank account stopping all transactions from going through",
"label": 1
},
{
"utterance": "what would cause me to be locked out of my bank account",
"label": 1
},
{
"utterance": "find out the reason why am i locked out of my bank account",
"label": 1
},
{
"utterance": "make sure my alarm is set for three thirty in the morning",
"label": 2
},
{
"utterance": "please set an alarm for mid day",
"label": 2
},
{
"utterance": "have an alarm set for three in the morning",
"label": 2
},
{
"utterance": "set an alarm for me for 10:00 and another one set for 4:00",
"label": 2
},
{
"utterance": "why are exponents preformed before multiplication in the order of operations"
"utterance": "set an alarm to go to sleep and another to wake up",
"label": 2
},
{
"utterance": "what size wipers does this car take"
"utterance": "how much is an overdraft fee for bank",
"label": 3
},
{
"utterance": "where is the dipstick"
"utterance": "why are exponents preformed before multiplication in the order of operations",
"label": 3
},
{
"utterance": "what size wipers does this car take",
"label": 3
},
{
"utterance": "how much is 1 share of aapl"
},
{
"utterance": "how is glue made"
},
{
"utterance": "how is glue made"
}
Expand Down
8 changes: 4 additions & 4 deletions tests/context/datahandler/test_stratificaiton.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,8 +12,8 @@ def test_train_test_split(dataset):

assert Split.TRAIN in dataset
assert Split.TEST in dataset
assert dataset[Split.TRAIN].num_rows == 24
assert dataset[Split.TEST].num_rows == 6
assert dataset[Split.TRAIN].num_rows == 29
assert dataset[Split.TEST].num_rows == 8
assert dataset.get_n_classes(Split.TRAIN) == dataset.get_n_classes(Split.TEST)


Expand All @@ -28,6 +28,6 @@ def test_multilabel_train_test_split(dataset):

assert Split.TRAIN in dataset
assert Split.TEST in dataset
assert dataset[Split.TRAIN].num_rows == 24
assert dataset[Split.TEST].num_rows == 6
assert dataset[Split.TRAIN].num_rows == 30
assert dataset[Split.TEST].num_rows == 7
assert dataset.get_n_classes(Split.TRAIN) == dataset.get_n_classes(Split.TEST)
6 changes: 6 additions & 0 deletions tests/modules/prediction/conftest.py
Original file line number Diff line number Diff line change
@@ -1,3 +1,4 @@
import numpy as np
import pytest

from autointent.context.data_handler import DataHandler
Expand Down Expand Up @@ -43,3 +44,8 @@ def multilabel_fit_data(dataset):
scores = scorer.predict(data_handler.validation_utterances(1) + data_handler.oos_utterances(1))
labels = data_handler.validation_labels(1) + [[0] * data_handler.n_classes] * len(data_handler.oos_utterances(1))
return scores, labels


@pytest.fixture
def scores():
return np.array([[0.05, 0.9, 0, 0.05], [0.8, 0, 0.1, 0.1], [0, 0.2, 0.7, 0.1]])
4 changes: 2 additions & 2 deletions tests/modules/prediction/test_adaptive.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,9 +8,9 @@
def test_multilabel(multilabel_fit_data):
predictor = AdaptivePredictor()
predictor.fit(*multilabel_fit_data)
scores = np.array([[0.2, 0.9, 0], [0.8, 0, 0.6], [0, 0.4, 0.7]])
scores = np.array([[0.2, 0.9, 0, 0], [0.8, 0, 0.6, 0], [0, 0.4, 0.7, 0]])
predictions = predictor.predict(scores)
desired = np.array([[0, 1, 0], [1, 0, 1], [0, 1, 1]])
desired = np.array([[0, 1, 0, 0], [1, 0, 1, 0], [0, 1, 1, 0]])

np.testing.assert_array_equal(predictions, desired)

Expand Down
3 changes: 1 addition & 2 deletions tests/modules/prediction/test_argmax.py
voorhs marked this conversation as resolved.
Show resolved Hide resolved
Original file line number Diff line number Diff line change
Expand Up @@ -5,10 +5,9 @@
from autointent.modules.prediction._utils import InvalidNumClassesError, WrongClassificationError


def test_multiclass(multiclass_fit_data):
def test_multiclass(multiclass_fit_data, scores):
predictor = ArgmaxPredictor()
predictor.fit(*multiclass_fit_data)
scores = np.array([[0.1, 0.9, 0], [0.8, 0, 0.2], [0, 0.3, 0.7]])
predictions = predictor.predict(scores)
np.testing.assert_array_equal(predictions, np.array([1, 0, 2]))

Expand Down
4 changes: 1 addition & 3 deletions tests/modules/prediction/test_jinoos.py
Samoed marked this conversation as resolved.
Show resolved Hide resolved
Original file line number Diff line number Diff line change
Expand Up @@ -18,11 +18,9 @@ def detect_oos(scores: npt.NDArray[Any], labels: npt.NDArray[Any], thresh: float
return labels


def test_predict_returns_correct_indices(multiclass_fit_data):
def test_predict_returns_correct_indices(multiclass_fit_data, scores):
predictor = JinoosPredictor()
predictor.fit(*multiclass_fit_data)
scores = np.array([[0.1, 0.9, 0], [0.8, 0, 0.2], [0, 0.3, 0.7]])

# inference
predictions = predictor.predict(scores)
desired = detect_oos(scores, np.array([1, 0, 2]), predictor.thresh)
Expand Down
Loading
Loading