Official implementation of OPSRL
algorithm and baselines from the paper D.Tiapkin et al. "Optimistic Posterior Sampling for Reinforcement Learning with Few Samples and Tight Guarantees". The algorithms are implemented in the folder algorithms/
, the parameters are contained in the folder config\
.
Requirements:
- Python 3.8
- rlberry 0.2.1
Running experiment opsrl_vs_baselines
and generate the plots
python run.py config/experiments/opsrl_vs_baselines.yaml
python plot_opsrl_vs_baselines.py
Running experiment opsrl_samples
and generate the plots
python run.py config/experiments/opsrl_samples.yaml
python plot_opsrl_samples.py
Running experiment opsrl_prior
and generate the plots
python run.py config/experiments/opsrl_prior.yaml
python plot_opsrl_prior.py