-
Notifications
You must be signed in to change notification settings - Fork 1
/
plot_opsrl_samples.py
54 lines (48 loc) · 1.83 KB
/
plot_opsrl_samples.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
from rlberry.experiment import load_experiment_results
from rlberry.manager.evaluation import plot_writer_data
from rlberry.agents.dynprog import ValueIterationAgent
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import rcParams
# figure size in inches
rcParams['figure.figsize'] = 10,7
rcParams['mathtext.default'] = 'regular'
rcParams['font.size'] = 14
# ------------------------------------------
# OPSRL samples
# ------------------------------------------
EXPERIMENT_NAME = 'opsrl_samples'
# Get list of managers and update names
PLOT_TITLES = {
'opsrl01': 'OPSRL 1 sample',
'opsrl08': 'OPSRL 8 sample',
'opsrl16': 'OPSRL 16 sample',
'opsrl32': 'OPSRL 32 sample',
}
output_data = load_experiment_results('results', EXPERIMENT_NAME)
_manager_list = list(output_data['manager'].values())
manager_list = []
agents_list = []
# Sort by names
_manager_list = sorted(_manager_list, key=lambda x: x.agent_name)
for manager in _manager_list:
if manager.agent_name in PLOT_TITLES:
manager.agent_name = PLOT_TITLES[manager.agent_name]
manager_list.append(manager)
print(manager.agent_name)
print("n agents = ", len(manager.get_agent_instances()))
agents_list.append(manager.get_agent_instances()[0])
del manager.agent_handlers
# Get value of optimal agent
env = manager_list[0].train_env
horizon = agents_list[0].horizon
vi_agent = ValueIterationAgent(env, gamma=1.0, horizon=horizon)
vi_agent.fit(budget=1000)
v_star = vi_agent.V[0,vi_agent.env.reset()]
def compute_regret(episode_rewards):
return np.cumsum(v_star - episode_rewards)
res = plot_writer_data(manager_list, tag="episode_rewards", show = False, preprocess_func=compute_regret, title=' ')
plt.ylabel('regret')
plt.xlabel('episode')
plt.grid()
plt.savefig('{}.pdf'.format(EXPERIMENT_NAME))