-
Notifications
You must be signed in to change notification settings - Fork 23
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Signed-off-by: Avimitin <[email protected]>
- Loading branch information
Showing
5 changed files
with
186 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,3 @@ | ||
arg0.data | ||
forward.mlir | ||
subgraph0.mlir |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,60 @@ | ||
{ buildBuddyE2ETest, fetchurl }: | ||
let | ||
lenetModel = fetchurl { | ||
url = "https://raw.githubusercontent.com/buddy-compiler/buddy-benchmark/1e166d53faae6d96a209645688cd9ab1d6eb604d/benchmarks/DeepLearning/Models/LeNet/lenet_model.pth"; | ||
hash = "sha256-OqUzJ9vF1GF6jMVlSm0AYowLk4ypiR/Qs2KD9NMQJfg="; | ||
}; | ||
in | ||
buildBuddyE2ETest { | ||
caseName = "lenet"; | ||
|
||
optPhase = '' | ||
export LENET_MODEL_PATH=${lenetModel} | ||
python ./lenet.py | ||
echo "Lowering forward.mlir" | ||
buddy-opt forward.mlir -pass-pipeline \ | ||
"builtin.module(func.func(tosa-to-linalg-named, tosa-to-linalg, tosa-to-tensor, tosa-to-arith), \ | ||
empty-tensor-to-alloc-tensor, convert-elementwise-to-linalg, arith-bufferize, \ | ||
func.func(linalg-bufferize, tensor-bufferize), func-bufferize)" \ | ||
| buddy-opt -pass-pipeline \ | ||
"builtin.module(func.func(buffer-deallocation-simplification, convert-linalg-to-loops), \ | ||
eliminate-empty-tensors, func.func(llvm-request-c-wrappers), \ | ||
convert-math-to-llvm, convert-math-to-libm, convert-scf-to-cf, \ | ||
convert-arith-to-llvm, expand-strided-metadata, finalize-memref-to-llvm, \ | ||
convert-func-to-llvm, reconcile-unrealized-casts)" \ | ||
> forward-lowered.mlir | ||
echo "Lowering subgraphs[0]" | ||
buddy-opt subgraphs0.mlir -pass-pipeline \ | ||
"builtin.module(func.func(tosa-to-linalg-named, tosa-to-arith, tosa-to-linalg, tosa-to-tensor))" \ | ||
| buddy-opt \ | ||
-convert-elementwise-to-linalg \ | ||
-func-bufferize-dynamic-offset \ | ||
-arith-bufferize \ | ||
-func-bufferize \ | ||
-tensor-bufferize \ | ||
-linalg-bufferize \ | ||
-finalizing-bufferize \ | ||
-batchmatmul-optimize \ | ||
-convert-linalg-to-affine-loops \ | ||
-lower-affine \ | ||
-convert-vector-to-scf \ | ||
-convert-scf-to-cf \ | ||
-llvm-request-c-wrappers \ | ||
-convert-vector-to-llvm \ | ||
-convert-math-to-llvm \ | ||
-convert-math-to-libm \ | ||
-convert-arith-to-llvm \ | ||
-convert-func-to-llvm \ | ||
-expand-strided-metadata \ | ||
-finalize-memref-to-llvm \ | ||
-reconcile-unrealized-casts \ | ||
> subgraphs0-lowered.mlir | ||
optArtifacts+=( | ||
"forward-lowered.mlir" | ||
"subgraphs0-lowered.mlir" | ||
) | ||
''; | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,34 @@ | ||
#include "memref.hpp" | ||
|
||
#define INPUT_N 1 | ||
#define INPUT_C 1 | ||
#define INPUT_H 28 | ||
#define INPUT_W 28 | ||
#define INPUT_TOTAL (INPUT_N * INPUT_C * INPUT_H * INPUT_W) | ||
#define OUTPUT_N 10 | ||
#define PARAM_N 44426 | ||
|
||
__attribute((section(".vdata"))) float input_0[INPUT_TOTAL]; | ||
__attribute((section(".vdata"))) float output_0[OUTPUT_N]; | ||
__attribute((section(".vdata"))) float param_0[PARAM_N]; | ||
|
||
// Define the sizes of the input and output tensors. | ||
static const int32_t sizesInput[4] = {INPUT_N, INPUT_C, INPUT_H, INPUT_W}; | ||
static const int32_t sizesOutput[2] = {1, OUTPUT_N}; | ||
static const int32_t sizesParams[1] = {PARAM_N}; | ||
|
||
// Create input and output containers for the image and model output. | ||
MemRef<float, 4> input(input_0, sizesInput); | ||
MemRef<float, 2> output(output_0, sizesOutput); | ||
MemRef<float, 1> params(param_0, 2.0, sizesParams); | ||
|
||
// Declare the target model C interface. | ||
extern "C" { | ||
void _mlir_ciface_forward(MemRef<float, 2> *output, MemRef<float, 1> *arg0, | ||
MemRef<float, 4> *input); | ||
} | ||
|
||
extern "C" int test() { | ||
_mlir_ciface_forward(&output, ¶ms, &input); | ||
return 0; | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,47 @@ | ||
import os | ||
import sys | ||
from pathlib import Path | ||
|
||
import numpy as np | ||
import torch | ||
from torch._inductor.decomposition import decompositions as inductor_decomp | ||
|
||
from buddy.compiler.frontend import DynamoCompiler | ||
from buddy.compiler.graph import GraphDriver | ||
from buddy.compiler.graph.transform import simply_fuse | ||
from buddy.compiler.ops import tosa | ||
from model import LeNet | ||
|
||
def main(): | ||
model_path = os.environ.get("LENET_MODEL_PATH") | ||
if model_path is None: | ||
sys.exit("Error: No model path was provided. Please set $LENET_MODEL_PATH") | ||
model = torch.load(model_path) | ||
model = model.eval() | ||
|
||
# Initialize Dynamo Compiler with specific configurations as an importer. | ||
dynamo_compiler = DynamoCompiler( | ||
primary_registry=tosa.ops_registry, | ||
aot_autograd_decomposition=inductor_decomp, | ||
) | ||
|
||
data = torch.randn([1, 1, 28, 28]) | ||
# Import the model into MLIR module and parameters. | ||
with torch.no_grad(): | ||
graphs = dynamo_compiler.importer(model, data) | ||
|
||
assert len(graphs) == 1 | ||
graph = graphs[0] | ||
params = dynamo_compiler.imported_params[graph] | ||
pattern_list = [simply_fuse] | ||
graphs[0].fuse_ops(pattern_list) | ||
driver = GraphDriver(graphs[0]) | ||
driver.subgraphs[0].lower_to_top_level_ir() | ||
|
||
with open("subgraphs0.mlir", "w") as module_file: | ||
print(driver.subgraphs[0]._imported_module, file=module_file) | ||
with open("forward.mlir", "w") as module_file: | ||
print(driver.construct_main_graph(True), file=module_file) | ||
|
||
if __name__ == "__main__": | ||
main() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,42 @@ | ||
# ===- model.py ---------------------------------------------------------------- | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# | ||
# ===--------------------------------------------------------------------------- | ||
# | ||
# LeNet model definition. | ||
# | ||
# ===--------------------------------------------------------------------------- | ||
|
||
import torch | ||
import torch.nn as nn | ||
|
||
|
||
class LeNet(nn.Module): | ||
def __init__(self): | ||
super(LeNet, self).__init__() | ||
self.conv1 = nn.Conv2d(1, 6, 5) | ||
self.pool = nn.MaxPool2d(2, 2) | ||
self.conv2 = nn.Conv2d(6, 16, 5) | ||
self.fc1 = nn.Linear(16 * 4 * 4, 120) | ||
self.fc2 = nn.Linear(120, 84) | ||
self.fc3 = nn.Linear(84, 10) | ||
|
||
def forward(self, x): | ||
x = self.pool(torch.relu(self.conv1(x))) | ||
x = self.pool(torch.relu(self.conv2(x))) | ||
x = x.view(-1, 16 * 4 * 4) | ||
x = torch.relu(self.fc1(x)) | ||
x = torch.relu(self.fc2(x)) | ||
x = self.fc3(x) | ||
return x |