Skip to content

This code calculates Abs Real Error of the struct2depth and Depth from video in the wild model. (Success)

Notifications You must be signed in to change notification settings

benzg500/struct2depth_eval

 
 

Repository files navigation

struct2depth_eval

This code is modified from "struct2depth" to use and evaluate depth_from_video_in_the_wild.

Abs Rel Error calculation code is from SfM Learner.

Example input

Train example

nohup python -m depth_from_video_in_the_wild.train \
--data_dir /home/ubuntu/data/kitti_result_all_20200715 \
--checkpoint_dir=/home/ubuntu/data/kitti_experiment_checkpoint_20200716 \
--imagenet_ckpt=/home/ubuntu/data/ResNet18/model.ckpt \
--train_steps=1000000 &

Getting Abs Rel Error

python kitti_eval/eval_depth.py --kitti_dir=/home/ubuntu/data/raw_data_KITTI/ --pred_file=/home/ubuntu/data/result_20200716_279296/result.npy

Finetuning with the video taken in Saitama

nohup python -m depth_from_video_in_the_wild.train \
--data_dir /home/ubuntu/Sayama/out \
--checkpoint_dir=/home/ubuntu/data/kitti_experiment_checkpoint_20200716 \
--imagenet_ckpt=/home/ubuntu/data/ResNet18/model.ckpt \
--train_steps=1000000 &

Evaluation

Before fine tuning

Getting Predicted Depth

python inference_dfv.py \
    --logtostderr \
    --file_extension png \
    --depth \
    --egomotion false \
    --input_dir /home/ubuntu/Sayama/tmpdir/2020_08_04/video1top_png/image_02/data/ \
    --output_dir /home/ubuntu/Sayama/result_video1top_273486/ \
    --model_ckpt /home/ubuntu/data/kitti_experiment_checkpoint_20200716/model-273486

After fine tuning

Getting Predicted Depth

python inference_dfv.py \
    --logtostderr \
    --file_extension png \
    --depth \
    --egomotion false \
    --input_dir /home/ubuntu/Sayama/tmpdir/2020_08_04/video1top_png/image_02/data/ \
    --output_dir /home/ubuntu/Sayama/result_video1top_279296/ \
    --model_ckpt /home/ubuntu/data/kitti_experiment_checkpoint_20200716/model-279296

About

This code calculates Abs Real Error of the struct2depth and Depth from video in the wild model. (Success)

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 99.6%
  • Other 0.4%