forked from go125/struct2depth_eval
-
Notifications
You must be signed in to change notification settings - Fork 0
/
gen_data_city.py
158 lines (134 loc) · 5.75 KB
/
gen_data_city.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
# Copyright 2018 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
""" Offline data generation for the Cityscapes dataset."""
import os
from absl import app
from absl import flags
from absl import logging
import numpy as np
import cv2
import os, glob
import alignment
from alignment import compute_overlap
from alignment import align
SKIP = 2
WIDTH = 416
HEIGHT = 128
SUB_FOLDER = 'train'
INPUT_DIR = '/usr/local/google/home/anelia/struct2depth/CITYSCAPES_FULL/'
OUTPUT_DIR = '/usr/local/google/home/anelia/struct2depth/CITYSCAPES_Processed/'
def crop(img, segimg, fx, fy, cx, cy):
# Perform center cropping, preserving 50% vertically.
middle_perc = 0.50
left = 1 - middle_perc
half = left / 2
a = img[int(img.shape[0]*(half)):int(img.shape[0]*(1-half)), :]
aseg = segimg[int(segimg.shape[0]*(half)):int(segimg.shape[0]*(1-half)), :]
cy /= (1 / middle_perc)
# Resize to match target height while preserving aspect ratio.
wdt = int((float(HEIGHT)*a.shape[1]/a.shape[0]))
x_scaling = float(wdt)/a.shape[1]
y_scaling = float(HEIGHT)/a.shape[0]
b = cv2.resize(a, (wdt, HEIGHT))
bseg = cv2.resize(aseg, (wdt, HEIGHT))
# Adjust intrinsics.
fx*=x_scaling
fy*=y_scaling
cx*=x_scaling
cy*=y_scaling
# Perform center cropping horizontally.
remain = b.shape[1] - WIDTH
cx /= (b.shape[1] / WIDTH)
c = b[:, int(remain/2):b.shape[1]-int(remain/2)]
cseg = bseg[:, int(remain/2):b.shape[1]-int(remain/2)]
return c, cseg, fx, fy, cx, cy
def run_all():
dir_name=INPUT_DIR + '/leftImg8bit_sequence/' + SUB_FOLDER + '/*'
print('Processing directory', dir_name)
for location in glob.glob(INPUT_DIR + '/leftImg8bit_sequence/' + SUB_FOLDER + '/*'):
location_name = os.path.basename(location)
print('Processing location', location_name)
files = sorted(glob.glob(location + '/*.png'))
files = [file for file in files if '-seg.png' not in file]
# Break down into sequences
sequences = {}
seq_nr = 0
last_seq = ''
last_imgnr = -1
for i in range(len(files)):
seq = os.path.basename(files[i]).split('_')[1]
nr = int(os.path.basename(files[i]).split('_')[2])
if seq!=last_seq or last_imgnr+1!=nr:
seq_nr+=1
last_imgnr = nr
last_seq = seq
if not seq_nr in sequences:
sequences[seq_nr] = []
sequences[seq_nr].append(files[i])
for (k,v) in sequences.items():
print('Processing sequence', k, 'with', len(v), 'elements...')
output_dir = OUTPUT_DIR + '/' + location_name + '_' + str(k)
if not os.path.isdir(output_dir):
os.mkdir(output_dir)
files = sorted(v)
triplet = []
seg_triplet = []
ct = 1
# Find applicable intrinsics.
for j in range(len(files)):
osegname = os.path.basename(files[j]).split('_')[1]
oimgnr = os.path.basename(files[j]).split('_')[2]
applicable_intrinsics = INPUT_DIR + '/camera/' + SUB_FOLDER + '/' + location_name + '/' + location_name + '_' + osegname + '_' + oimgnr + '_camera.json'
# Get the intrinsics for one of the file of the sequence.
if os.path.isfile(applicable_intrinsics):
f = open(applicable_intrinsics, 'r')
lines = f.readlines()
f.close()
lines = [line.rstrip() for line in lines]
fx = float(lines[11].split(': ')[1].replace(',', ''))
fy = float(lines[12].split(': ')[1].replace(',', ''))
cx = float(lines[13].split(': ')[1].replace(',', ''))
cy = float(lines[14].split(': ')[1].replace(',', ''))
for j in range(0, len(files), SKIP):
img = cv2.imread(files[j])
segimg = cv2.imread(files[j].replace('.png', '-seg.png'))
smallimg, segimg, fx_this, fy_this, cx_this, cy_this = crop(img, segimg, fx, fy, cx, cy)
triplet.append(smallimg)
seg_triplet.append(segimg)
if len(triplet)==3:
cmb = np.hstack(triplet)
align1, align2, align3 = align(seg_triplet[0], seg_triplet[1], seg_triplet[2])
cmb_seg = np.hstack([align1, align2, align3])
cv2.imwrite(os.path.join(output_dir, str(ct).zfill(10) + '.png'), cmb)
cv2.imwrite(os.path.join(output_dir, str(ct).zfill(10) + '-fseg.png'), cmb_seg)
f = open(os.path.join(output_dir, str(ct).zfill(10) + '_cam.txt'), 'w')
f.write(str(fx_this) + ',0.0,' + str(cx_this) + ',0.0,' + str(fy_this) + ',' + str(cy_this) + ',0.0,0.0,1.0')
f.close()
del triplet[0]
del seg_triplet[0]
ct+=1
# Create file list for training. Be careful as it collects and includes all files recursively.
fn = open(OUTPUT_DIR + '/' + SUB_FOLDER + '.txt', 'w')
for f in glob.glob(OUTPUT_DIR + '/*/*.png'):
if '-seg.png' in f or '-fseg.png' in f:
continue
folder_name = f.split('/')[-2]
img_name = f.split('/')[-1].replace('.png', '')
fn.write(folder_name + ' ' + img_name + '\n')
fn.close()
def main(_):
run_all()
if __name__ == '__main__':
app.run(main)