Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat: add reevaluation function to compute corrected archives in uncertain domains #186

Merged
merged 3 commits into from
Sep 6, 2024
Merged
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
318 changes: 318 additions & 0 deletions qdax/utils/uncertainty_metrics.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,318 @@
from functools import partial
from typing import Callable, Tuple

import jax
import jax.numpy as jnp

from qdax.core.containers.mapelites_repertoire import MapElitesRepertoire
from qdax.types import Descriptor, ExtraScores, Fitness, Genotype, RNGKey
from qdax.utils.sampling import (
dummy_extra_scores_extractor,
median,
multi_sample_scoring_function,
std,
)


@partial(
jax.jit,
static_argnames=(
"scoring_fn",
"num_reevals",
"fitness_extractor",
"descriptor_extractor",
"extra_scores_extractor",
"scan_size",
),
)
def reevaluation_function(
repertoire: MapElitesRepertoire,
random_key: RNGKey,
empty_corrected_repertoire: MapElitesRepertoire,
scoring_fn: Callable[
[Genotype, RNGKey],
Tuple[Fitness, Descriptor, ExtraScores, RNGKey],
],
num_reevals: int,
fitness_extractor: Callable[[jnp.ndarray], jnp.ndarray] = median,
descriptor_extractor: Callable[[jnp.ndarray], jnp.ndarray] = median,
extra_scores_extractor: Callable[
[ExtraScores, int], ExtraScores
] = dummy_extra_scores_extractor,
scan_size: int = 0,
) -> Tuple[MapElitesRepertoire, RNGKey]:
"""
Perform reevaluation of a repertoire and construct a corrected repertoire from it.

Args:
repertoire: repertoire to reevaluate.
empty_corrected_repertoire: repertoire to be filled with reevaluated solutions,
allow to use a different type of repertoire than the one from the algorithm.
random_key: JAX random key.
scoring_fn: scoring function used for evaluation.
num_reevals: number of samples to generate for each individual.
fitness_extractor: function to extract the final fitness from
multiple samples of the same solution (default: median).
descriptor_extractor: function to extract the final descriptor from
multiple samples of the same solution (default: median).
extra_scores_extractor: function to extract the extra_scores from
multiple samples of the same solution (default: no effect).
scan_size: allow to split the reevaluations in multiple batch to reduce
the memory load of the reevaluation.
Returns:
The corrected repertoire and a random key.
"""

# If no reevaluations, return copies of the original container
if num_reevals == 0:
return repertoire, random_key

# Perform reevaluation
(
all_fitnesses,
all_descriptors,
all_extra_scores,
random_key,
) = _perform_reevaluation(
policies_params=repertoire.genotypes,
random_key=random_key,
scoring_fn=scoring_fn,
num_reevals=num_reevals,
scan_size=scan_size,
)

# Extract the final scores
extra_scores = extra_scores_extractor(all_extra_scores, num_reevals)
fitnesses = fitness_extractor(all_fitnesses)
descriptors = descriptor_extractor(all_descriptors)

# Set -inf fitness for all unexisting indivs
fitnesses = jnp.where(repertoire.fitnesses == -jnp.inf, -jnp.inf, fitnesses)

# Fill-in the corrected repertoire
corrected_repertoire = empty_corrected_repertoire.add(
batch_of_genotypes=repertoire.genotypes,
batch_of_descriptors=descriptors,
batch_of_fitnesses=fitnesses,
batch_of_extra_scores=extra_scores,
)

return corrected_repertoire, random_key


@partial(
jax.jit,
static_argnames=(
"scoring_fn",
"num_reevals",
"fitness_extractor",
"fitness_reproducibility_extractor",
"descriptor_extractor",
"descriptor_reproducibility_extractor",
"extra_scores_extractor",
"scan_size",
),
)
def reevaluation_reproducibility_function(
repertoire: MapElitesRepertoire,
random_key: RNGKey,
empty_corrected_repertoire: MapElitesRepertoire,
scoring_fn: Callable[
[Genotype, RNGKey],
Tuple[Fitness, Descriptor, ExtraScores, RNGKey],
],
num_reevals: int,
fitness_extractor: Callable[[jnp.ndarray], jnp.ndarray] = median,
fitness_reproducibility_extractor: Callable[[jnp.ndarray], jnp.ndarray] = std,
descriptor_extractor: Callable[[jnp.ndarray], jnp.ndarray] = median,
descriptor_reproducibility_extractor: Callable[[jnp.ndarray], jnp.ndarray] = std,
extra_scores_extractor: Callable[
[ExtraScores, int], ExtraScores
] = dummy_extra_scores_extractor,
scan_size: int = 0,
) -> Tuple[MapElitesRepertoire, MapElitesRepertoire, MapElitesRepertoire, RNGKey]:
"""
Perform reevaluation of a repertoire and construct a corrected repertoire and a
reproducibility repertoire from it.

Args:
repertoire: repertoire to reevaluate.
empty_corrected_repertoire: repertoire to be filled with reevaluated solutions,
allow to use a different type of repertoire than the one from the algorithm.
random_key: JAX random key.
scoring_fn: scoring function used for evaluation.
num_reevals: number of samples to generate for each individual.
fitness_extractor: function to extract the final fitness from
multiple samples of the same solution (default: median).
fitness_reproducibility_extractor: function to extract the fitness
reproducibility from multiple samples of the same solution (default: std).
descriptor_extractor: function to extract the final descriptor from
multiple samples of the same solution (default: median).
descriptor_reproducibility_extractor: function to extract the descriptor
reproducibility from multiple samples of the same solution (default: std).
extra_scores_extractor: function to extract the extra_scores from
multiple samples of the same solution (default: no effect).
scan_size: allow to split the reevaluations in multiple batch to reduce
the memory load of the reevaluation.
Returns:
The corrected repertoire.
A repertoire storing reproducibility in fitness.
A repertoire storing reproducibility in descriptor.
A random key.
"""

# If no reevaluations, return copies of the original container
if num_reevals == 0:
return (
repertoire,
repertoire,
repertoire,
random_key,
)

# Perform reevaluation
(
all_fitnesses,
all_descriptors,
all_extra_scores,
random_key,
) = _perform_reevaluation(
policies_params=repertoire.genotypes,
random_key=random_key,
scoring_fn=scoring_fn,
num_reevals=num_reevals,
scan_size=scan_size,
)

# Extract the final scores
extra_scores = extra_scores_extractor(all_extra_scores, num_reevals)
fitnesses = fitness_extractor(all_fitnesses)
fitnesses_reproducibility = fitness_reproducibility_extractor(all_fitnesses)
descriptors = descriptor_extractor(all_descriptors)
descriptors_reproducibility = descriptor_reproducibility_extractor(all_descriptors)

# WARNING: in the case of descriptors_reproducibility, take average over dimensions
descriptors_reproducibility = jnp.average(descriptors_reproducibility, axis=-1)

# Set -inf fitness for all unexisting indivs
fitnesses = jnp.where(repertoire.fitnesses == -jnp.inf, -jnp.inf, fitnesses)
fitnesses_reproducibility = jnp.where(
repertoire.fitnesses == -jnp.inf, -jnp.inf, fitnesses_reproducibility
)
descriptors_reproducibility = jnp.where(
repertoire.fitnesses == -jnp.inf, -jnp.inf, descriptors_reproducibility
)

# Fill-in corrected repertoire
corrected_repertoire = empty_corrected_repertoire.add(
batch_of_genotypes=repertoire.genotypes,
batch_of_descriptors=descriptors,
batch_of_fitnesses=fitnesses,
batch_of_extra_scores=extra_scores,
)

# Fill-in fit_reproducibility repertoire
fit_reproducibility_repertoire = empty_corrected_repertoire.add(
batch_of_genotypes=repertoire.genotypes,
batch_of_descriptors=repertoire.descriptors,
batch_of_fitnesses=fitnesses_reproducibility,
batch_of_extra_scores=extra_scores,
)

# Fill-in desc_reproducibility repertoire
desc_reproducibility_repertoire = empty_corrected_repertoire.add(
batch_of_genotypes=repertoire.genotypes,
batch_of_descriptors=repertoire.descriptors,
batch_of_fitnesses=descriptors_reproducibility,
batch_of_extra_scores=extra_scores,
)

return (
corrected_repertoire,
fit_reproducibility_repertoire,
desc_reproducibility_repertoire,
random_key,
)


@partial(
jax.jit,
static_argnames=(
"scoring_fn",
"num_reevals",
"scan_size",
),
)
def _perform_reevaluation(
policies_params: Genotype,
random_key: RNGKey,
scoring_fn: Callable[
[Genotype, RNGKey],
Tuple[Fitness, Descriptor, ExtraScores, RNGKey],
],
num_reevals: int,
scan_size: int = 0,
) -> Tuple[Fitness, Descriptor, ExtraScores, RNGKey]:
"""
Sub-function used to perform reevaluation of a repertoire in uncertain applications.

Args:
policies_params: genotypes to reevaluate.
random_key: JAX random key.
scoring_fn: scoring function used for evaluation.
num_reevals: number of samples to generate for each individual.
scan_size: allow to split the reevaluations in multiple batch to reduce
the memory load of the reevaluation.
Returns:
The fitnesses, descriptors and extra score from the reevaluation,
and a randon key.
"""

# If no need for scan, call the sampling function
if scan_size == 0:
(
all_fitnesses,
all_descriptors,
all_extra_scores,
random_key,
) = multi_sample_scoring_function(
policies_params=policies_params,
random_key=random_key,
scoring_fn=scoring_fn,
num_samples=num_reevals,
)

# If need for scan, call the sampling function multiple times
else:
num_loops = num_reevals // scan_size
Lookatator marked this conversation as resolved.
Show resolved Hide resolved

def _sampling_scan(
random_key: RNGKey,
unused: Tuple[()],
) -> Tuple[Tuple[RNGKey], Tuple[Fitness, Descriptor, ExtraScores]]:
(
all_fitnesses,
all_descriptors,
all_extra_scores,
random_key,
) = multi_sample_scoring_function(
policies_params=policies_params,
random_key=random_key,
scoring_fn=scoring_fn,
num_samples=scan_size,
)
return (random_key), (
all_fitnesses,
all_descriptors,
all_extra_scores,
)

(random_key), (
all_fitnesses,
all_descriptors,
all_extra_scores,
) = jax.lax.scan(_sampling_scan, (random_key), (), length=num_loops)
all_fitnesses = jnp.hstack(all_fitnesses)
all_descriptors = jnp.hstack(all_descriptors)

return all_fitnesses, all_descriptors, all_extra_scores, random_key
Loading
Loading