Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add Adam optimizer #590

Merged
merged 3 commits into from
Oct 23, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions src/machine_learning/mod.rs
Original file line number Diff line number Diff line change
Expand Up @@ -8,3 +8,4 @@ pub use self::loss_function::mae_loss;
pub use self::loss_function::mse_loss;

pub use self::optimization::gradient_descent;
pub use self::optimization::Adam;
288 changes: 288 additions & 0 deletions src/machine_learning/optimization/adam.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,288 @@
//! # Adam (Adaptive Moment Estimation) optimizer
//!
//! The `Adam (Adaptive Moment Estimation)` optimizer is an adaptive learning rate algorithm used
//! in gradient descent and machine learning, such as for training neural networks to solve deep
//! learning problems. Boasting memory-efficient fast convergence rates, it sets and iteratively
//! updates learning rates individually for each model parameter based on the gradient history.
//!
//! ## Algorithm:
//!
//! Given:
//! - α is the learning rate
//! - (β_1, β_2) are the exponential decay rates for moment estimates
//! - ϵ is any small value to prevent division by zero
//! - g_t are the gradients at time step t
//! - m_t are the biased first moment estimates of the gradient at time step t
//! - v_t are the biased second raw moment estimates of the gradient at time step t
//! - θ_t are the model parameters at time step t
//! - t is the time step
//!
//! Required:
//! θ_0
//!
//! Initialize:
//! m_0 <- 0
//! v_0 <- 0
//! t <- 0
//!
//! while θ_t not converged do
//! m_t = β_1 * m_{t−1} + (1 − β_1) * g_t
//! v_t = β_2 * v_{t−1} + (1 − β_2) * g_t^2
//! m_hat_t = m_t / 1 - β_1^t
//! v_hat_t = v_t / 1 - β_2^t
//! θ_t = θ_{t-1} − α * m_hat_t / (sqrt(v_hat_t) + ϵ)
//!
//! ## Resources:
//! - Adam: A Method for Stochastic Optimization (by Diederik P. Kingma and Jimmy Ba):
//! - [https://arxiv.org/abs/1412.6980]
//! - PyTorch Adam optimizer:
//! - [https://pytorch.org/docs/stable/generated/torch.optim.Adam.html#torch.optim.Adam]
//!
pub struct Adam {
learning_rate: f64, // alpha: initial step size for iterative optimization
betas: (f64, f64), // betas: exponential decay rates for moment estimates
epsilon: f64, // epsilon: prevent division by zero
m: Vec<f64>, // m: biased first moment estimate of the gradient vector
v: Vec<f64>, // v: biased second raw moment estimate of the gradient vector
t: usize, // t: time step
}

impl Adam {
pub fn new(
learning_rate: Option<f64>,
betas: Option<(f64, f64)>,
epsilon: Option<f64>,
params_len: usize,
) -> Self {
Adam {
learning_rate: learning_rate.unwrap_or(1e-3), // typical good default lr
betas: betas.unwrap_or((0.9, 0.999)), // typical good default decay rates
epsilon: epsilon.unwrap_or(1e-8), // typical good default epsilon
m: vec![0.0; params_len], // first moment vector elements all initialized to zero
v: vec![0.0; params_len], // second moment vector elements all initialized to zero
t: 0, // time step initialized to zero
}
}

pub fn step(&mut self, gradients: &Vec<f64>) -> Vec<f64> {
let mut model_params = vec![0.0; gradients.len()];
self.t += 1;

for i in 0..gradients.len() {
// update biased first moment estimate and second raw moment estimate
self.m[i] = self.betas.0 * self.m[i] + (1.0 - self.betas.0) * gradients[i];
self.v[i] = self.betas.1 * self.v[i] + (1.0 - self.betas.1) * gradients[i].powf(2f64);

// compute bias-corrected first moment estimate and second raw moment estimate
let m_hat = self.m[i] / (1.0 - self.betas.0.powi(self.t as i32));
let v_hat = self.v[i] / (1.0 - self.betas.1.powi(self.t as i32));

// update model parameters
model_params[i] -= self.learning_rate * m_hat / (v_hat.sqrt() + self.epsilon);
}
model_params // return updated model parameters
}
}

#[cfg(test)]
mod tests {
use super::*;

#[test]
fn test_adam_init_default_values() {
let optimizer = Adam::new(None, None, None, 1);

assert_eq!(optimizer.learning_rate, 0.001);
assert_eq!(optimizer.betas, (0.9, 0.999));
assert_eq!(optimizer.epsilon, 1e-8);
assert_eq!(optimizer.m, vec![0.0; 1]);
assert_eq!(optimizer.v, vec![0.0; 1]);
assert_eq!(optimizer.t, 0);
}

#[test]
fn test_adam_init_custom_lr_value() {
let optimizer = Adam::new(Some(0.9), None, None, 2);

assert_eq!(optimizer.learning_rate, 0.9);
assert_eq!(optimizer.betas, (0.9, 0.999));
assert_eq!(optimizer.epsilon, 1e-8);
assert_eq!(optimizer.m, vec![0.0; 2]);
assert_eq!(optimizer.v, vec![0.0; 2]);
assert_eq!(optimizer.t, 0);
}

#[test]
fn test_adam_init_custom_betas_value() {
let optimizer = Adam::new(None, Some((0.8, 0.899)), None, 3);

assert_eq!(optimizer.learning_rate, 0.001);
assert_eq!(optimizer.betas, (0.8, 0.899));
assert_eq!(optimizer.epsilon, 1e-8);
assert_eq!(optimizer.m, vec![0.0; 3]);
assert_eq!(optimizer.v, vec![0.0; 3]);
assert_eq!(optimizer.t, 0);
}

#[test]
fn test_adam_init_custom_epsilon_value() {
let optimizer = Adam::new(None, None, Some(1e-10), 4);

assert_eq!(optimizer.learning_rate, 0.001);
assert_eq!(optimizer.betas, (0.9, 0.999));
assert_eq!(optimizer.epsilon, 1e-10);
assert_eq!(optimizer.m, vec![0.0; 4]);
assert_eq!(optimizer.v, vec![0.0; 4]);
assert_eq!(optimizer.t, 0);
}

#[test]
fn test_adam_init_all_custom_values() {
let optimizer = Adam::new(Some(1.0), Some((0.001, 0.099)), Some(1e-1), 5);

assert_eq!(optimizer.learning_rate, 1.0);
assert_eq!(optimizer.betas, (0.001, 0.099));
assert_eq!(optimizer.epsilon, 1e-1);
assert_eq!(optimizer.m, vec![0.0; 5]);
assert_eq!(optimizer.v, vec![0.0; 5]);
assert_eq!(optimizer.t, 0);
}

#[test]
fn test_adam_step_default_params() {
let gradients = vec![-1.0, 2.0, -3.0, 4.0, -5.0, 6.0, -7.0, 8.0];

let mut optimizer = Adam::new(None, None, None, 8);
let updated_params = optimizer.step(&gradients);

assert_eq!(
updated_params,
vec![
0.0009999999900000003,
-0.000999999995,
0.0009999999966666666,
-0.0009999999975,
0.000999999998,
-0.0009999999983333334,
0.0009999999985714286,
-0.00099999999875
]
);
}

#[test]
fn test_adam_step_custom_params() {
let gradients = vec![9.0, -8.0, 7.0, -6.0, 5.0, -4.0, 3.0, -2.0, 1.0];

let mut optimizer = Adam::new(Some(0.005), Some((0.5, 0.599)), Some(1e-5), 9);
let updated_params = optimizer.step(&gradients);

assert_eq!(
updated_params,
vec![
-0.004999994444450618,
0.004999993750007813,
-0.004999992857153062,
0.004999991666680556,
-0.004999990000020001,
0.004999987500031251,
-0.004999983333388888,
0.004999975000124999,
-0.0049999500004999945
]
);
}

#[test]
fn test_adam_step_empty_gradients_array() {
let gradients = vec![];

let mut optimizer = Adam::new(None, None, None, 0);
let updated_params = optimizer.step(&gradients);

assert_eq!(updated_params, vec![]);
}

#[ignore]
#[test]
fn test_adam_step_iteratively_until_convergence_with_default_params() {
const CONVERGENCE_THRESHOLD: f64 = 1e-5;
let gradients = vec![1.0, 2.0, 3.0, 4.0, 5.0, 6.0];

let mut optimizer = Adam::new(None, None, None, 6);

let mut model_params = vec![0.0; 6];
let mut updated_params = optimizer.step(&gradients);

while (updated_params
.iter()
.zip(model_params.iter())
.map(|(x, y)| x - y)
.collect::<Vec<f64>>())
.iter()
.map(|&x| x.powi(2))
.sum::<f64>()
.sqrt()
> CONVERGENCE_THRESHOLD
{
model_params = updated_params;
updated_params = optimizer.step(&gradients);
}

assert!(updated_params < vec![CONVERGENCE_THRESHOLD; 6]);
assert_ne!(updated_params, model_params);
assert_eq!(
updated_params,
vec![
-0.0009999999899999931,
-0.0009999999949999929,
-0.0009999999966666597,
-0.0009999999974999929,
-0.0009999999979999927,
-0.0009999999983333263
]
);
}

#[ignore]
#[test]
fn test_adam_step_iteratively_until_convergence_with_custom_params() {
const CONVERGENCE_THRESHOLD: f64 = 1e-7;
let gradients = vec![7.0, -8.0, 9.0, -10.0, 11.0, -12.0, 13.0];

let mut optimizer = Adam::new(Some(0.005), Some((0.8, 0.899)), Some(1e-5), 7);

let mut model_params = vec![0.0; 7];
let mut updated_params = optimizer.step(&gradients);

while (updated_params
.iter()
.zip(model_params.iter())
.map(|(x, y)| x - y)
.collect::<Vec<f64>>())
.iter()
.map(|&x| x.powi(2))
.sum::<f64>()
.sqrt()
> CONVERGENCE_THRESHOLD
{
model_params = updated_params;
updated_params = optimizer.step(&gradients);
}

assert!(updated_params < vec![CONVERGENCE_THRESHOLD; 7]);
assert_ne!(updated_params, model_params);
assert_eq!(
updated_params,
vec![
-0.004999992857153061,
0.004999993750007814,
-0.0049999944444506185,
0.004999995000005001,
-0.004999995454549587,
0.004999995833336807,
-0.004999996153849113
]
);
}
}
3 changes: 3 additions & 0 deletions src/machine_learning/optimization/mod.rs
Original file line number Diff line number Diff line change
@@ -1,3 +1,6 @@
mod gradient_descent;

mod adam;

pub use self::adam::Adam;
pub use self::gradient_descent::gradient_descent;
Loading