Skip to content
/ edmr Public

Optimized DMR analysis based on bimodal normal distribution model and cost function for regional methylation analysis.

Notifications You must be signed in to change notification settings

ShengLi/edmr

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

88 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

edmr

Optimized DMR analysis based on bimodal normal distribution model and cost function for regional methylation analysis.

Citing edmr

Li S, Garrett-Bakelman FE, Akalin A, Zumbo P, Levine R, To BL, Lewis ID, Brown AL, D'Andrea RJ, Melnick A, Mason CE. An optimized algorithm for detecting and annotating regional differential methylation. BMC Bioinformatics. 2013;14 Suppl 5:S10.

Installation

install.packages( c("data.table", "mixtools", "devtools"))
source("http://bioconductor.org/biocLite.R")
biocLite(c("GenomicRanges","IRanges"))
# install from github
library(devtools)
install_github("ShengLi/edmr")

Usage

Step 1. Load add-on packages and example data

library(edmr)
library(GenomicRanges)
library(IRanges)
library(mixtools)
library(data.table)
data(edmr)

Step 2. myDiff evalution and plotting

# fitting the bimodal normal distribution to CpGs distribution
myMixmdl=myDiff.to.mixmdl(myDiff, plot=T, main="example")

# plot cost function and the determined distance cutoff
plotCost(myMixmdl, main="cost function")

alt tag alt tag

Step 3. Calculate DMRs

# calculate all DMRs candidate
mydmr=edmr(myDiff, mode=1, ACF=TRUE)

# further filtering the DMRs
mysigdmr=filter.dmr(mydmr)

## annotation
# get genebody annotation GRangesList object
#genebody=genebody.anno(file="http://edmr.googlecode.com/files/hg19_refseq_all_types.bed")
genebody.file=system.file("extdata", "chr22.hg19_refseq_all_types.bed.gz", package = "edmr")
genebody=genebody.anno(file=genebody.file)

# plot the eDMR genebody annotation
plotdmrdistr(mysigdmr, genebody)

# get CpG islands and shores annotation
#cpgi=cpgi.anno(file="http://edmr.googlecode.com/files/hg19_cpgisland_all.bed")
cpgi.file=system.file("extdata", "chr22.hg19_cpgisland_all.bed.gz", package = "edmr")
cpgi=cpgi.anno(file=cpgi.file)

# plot the eDMR CpG islands and shores annotation
plotdmrdistr(mysigdmr, cpgi)

# prepare genes for pathway analysis with significant DMRs at its promoter regions 
dmr.genes=get.dmr.genes(myDMR=mysigdmr, subject=genebody$promoter, id.type="gene.symbol")
dmr.genes

alt tag alt tag

About

Optimized DMR analysis based on bimodal normal distribution model and cost function for regional methylation analysis.

Resources

Stars

Watchers

Forks

Packages

No packages published

Languages