Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Shimada tungsten permeability 2019 #274

Merged
merged 2 commits into from
Mar 26, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
52 changes: 18 additions & 34 deletions h_transport_materials/property_database/tungsten/tungsten.py
Original file line number Diff line number Diff line change
Expand Up @@ -66,9 +66,7 @@

moore_diffusivity_tungsten_h = Diffusivity(
data_T=[1783.0, 1890.0, 1960.0, 2045.0, 2175.0] * u.K,
data_y=np.array([6.45e-9, 1.26e-8, 1.81e-8, 3.01e-8, 5.15e-8])
* u.cm**2
* u.s**-1,
data_y=np.array([6.45e-9, 1.26e-8, 1.81e-8, 3.01e-8, 5.15e-8]) * u.cm**2 * u.s**-1,
source="moore_thermal_2004",
isotope="H",
note="data in table IV. Units are not given but on page 2651 the equation indiquates that D is in cm2/s",
Expand All @@ -77,9 +75,7 @@

zakharov_diffusivity_tungsten_h = Diffusivity(
data_T=u.Quantity(np.array([400, 600, 800, 1000, 1200]), u.degC),
data_y=np.array([6.43e-8, 4.22e-6, 5.99e-5, 3.67e-4, 1.38e-3])
* u.cm**2
* u.s**-1,
data_y=np.array([6.43e-8, 4.22e-6, 5.99e-5, 3.67e-4, 1.38e-3]) * u.cm**2 * u.s**-1,
source="zakharov_hydrogen_1975",
isotope="H",
note="the author gives activation energies in cal",
Expand Down Expand Up @@ -274,11 +270,7 @@

rolled_114um_data_invT = liu_permeability_data["rolled_114umX"] * u.K**-1
rolled_114um_data_y = (
liu_permeability_data["rolled_114umY"]
* u.mol
* u.m**-1
* u.s**-1
* u.Pa**-0.5
liu_permeability_data["rolled_114umY"] * u.mol * u.m**-1 * u.s**-1 * u.Pa**-0.5
)
liu_permeability_rolled_114um = Permeability(
data_T=1 / rolled_114um_data_invT,
Expand All @@ -290,11 +282,7 @@

rolled_240um_data_invT = liu_permeability_data["rolled_240umX"] * u.K**-1
rolled_240um_data_y = (
liu_permeability_data["rolled_240umY"]
* u.mol
* u.m**-1
* u.s**-1
* u.Pa**-0.5
liu_permeability_data["rolled_240umY"] * u.mol * u.m**-1 * u.s**-1 * u.Pa**-0.5
)
liu_permeability_rolled_240um = Permeability(
data_T=1 / rolled_240um_data_invT,
Expand All @@ -306,11 +294,7 @@

annealed_50um_data_invT = liu_permeability_data["annealed_50umX"] * u.K**-1
annealed_50um_data_y = (
liu_permeability_data["annealed_50umY"]
* u.mol
* u.m**-1
* u.s**-1
* u.Pa**-0.5
liu_permeability_data["annealed_50umY"] * u.mol * u.m**-1 * u.s**-1 * u.Pa**-0.5
)
liu_permeability_annealed_50um = Permeability(
data_T=1 / annealed_50um_data_invT,
Expand All @@ -322,11 +306,7 @@

annealed_250um_data_invT = liu_permeability_data["annealed_250umX"] * u.K**-1
annealed_250um_data_y = (
liu_permeability_data["annealed_250umY"]
* u.mol
* u.m**-1
* u.s**-1
* u.Pa**-0.5
liu_permeability_data["annealed_250umY"] * u.mol * u.m**-1 * u.s**-1 * u.Pa**-0.5
)
liu_permeability_annealed_250um = Permeability(
data_T=1 / annealed_250um_data_invT,
Expand Down Expand Up @@ -396,9 +376,7 @@
)


recrystallized_250um_data_invT = (
liu_diffusivity_data["recrystallized_250umX"] * u.K**-1
)
recrystallized_250um_data_invT = liu_diffusivity_data["recrystallized_250umX"] * u.K**-1
recrystallized_250um_data_y = (
liu_diffusivity_data["recrystallized_250umY"] * u.m**2 * u.s**-1
)
Expand All @@ -421,11 +399,7 @@

bauchenaeur_permeability_iter_grade = Permeability(
data_T=1000 / (buchenauer_data["ITER_grade"]["x"] * u.K**-1),
data_y=buchenauer_data["ITER_grade"]["y"]
* u.mol
* u.m**-1
* u.s**-1
* u.MPa**-0.5,
data_y=buchenauer_data["ITER_grade"]["y"] * u.mol * u.m**-1 * u.s**-1 * u.MPa**-0.5,
source="buchenauer_permeation_2016",
isotope="D",
note="ITER grade Tungsten",
Expand Down Expand Up @@ -457,6 +431,15 @@
isotope="T",
)

shimada_permeability = Permeability(
pre_exp=2.13e-9 * u.mol * u.m**-1 * u.Pa**-0.5 * u.s**-1,
act_energy=93.32 * u.kJ * u.mol**-1,
isotope="T",
range=(573 * u.K, 873 * u.K),
note="polycristalline tungsten, pressure range 5.8e-2-6.8e-2 Pa, details in table 1",
source="shimada_tritium_2019",
)

properties = [
frauenfelder_diffusivity,
liu_diffusivity_tungsten,
Expand Down Expand Up @@ -500,6 +483,7 @@
bauchenaeur_permeability_ufg,
otsuka_diffusivity,
ikeda_diffusivity,
shimada_permeability,
]

for prop in properties:
Expand Down
18 changes: 18 additions & 0 deletions h_transport_materials/references.bib
Original file line number Diff line number Diff line change
Expand Up @@ -2621,3 +2621,21 @@ @article{guthrie_permeation_1974
volume = {53},
year = {1974}
}

@article{shimada_tritium_2019,
series = {{SI}:{SOFT}-30},
title = {Tritium permeability in polycrystalline tungsten},
volume = {146},
issn = {0920-3796},
url = {https://www.sciencedirect.com/science/article/pii/S0920379619304041},
doi = {10.1016/j.fusengdes.2019.03.083},
abstract = {A flowing hydrogen-tritium permeation system was used to investigate tritium permeation behavior in polycrystalline tungsten. Tritium permeability was measured with T2 partial pressure ranging from 5.8 × 10−2 Pa to 6.8 × 10−2 Pa over the temperature range from 573 to 873 K. The obtained tritium permeability in polycrystalline tungsten was PT [mol m−1s−1 Pa−0.5] = (2.13 × 10−9)exp(−93.32 [kJ mol−1]/RT). This is one of the first tritium permeability data from any polycrystalline tungsten via a gas-driven permeation technique. The tritium permeability in polycrystalline tungsten was compared with the reported hydrogen isotope permeability in other polycrystalline tungsten.},
urldate = {2024-03-21},
journal = {Fusion Engineering and Design},
author = {Shimada, M. and Pawelko, R. J.},
month = sep,
year = {2019},
keywords = {Permeation, Tritium permeability, Tungsten},
pages = {1988--1992},
file = {ScienceDirect Snapshot:C\:\\Users\\remidm\\Zotero\\storage\\K6L4T4HI\\S0920379619304041.html:text/html},
}
Loading