Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Further development of Fock states #69

Merged
merged 16 commits into from
Aug 6, 2024
1 change: 1 addition & 0 deletions docs/make.jl
Original file line number Diff line number Diff line change
Expand Up @@ -27,6 +27,7 @@ function main()
"Getting Started with QuantumSymbolics.jl" => "introduction.md",
"Express Functionality" => "express.md",
"Qubit Basis Choice" => "qubit_basis.md",
"Quantum Harmonic Oscillators" => "QHO.md",
"API" => "API.md",
]
)
Expand Down
159 changes: 159 additions & 0 deletions docs/src/QHO.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,159 @@
# Quantum Harmonic Oscillators

```@meta
DocTestSetup = quote
using QuantumSymbolics, QuantumOptics
end
```

In this section, we describe symbolic representations of bosonic systems in QuantumSymbolics, which can be numerically translated to [`QuantumOptics.jl`](https://github.com/qojulia/QuantumOptics.jl).

## States

A Fock state is a state with well defined number of excitation quanta of a single quantum harmonic oscillator (an eigenstate of the number operator). In the following example, we create a `FockState` with 3 quanta in an infinite-dimension Fock space:

```jldoctest
julia> f = FockState(3)
|3⟩
```

Both vacuum (ground) and single-photon states are defined as constants in both unicode and ASCII for convenience:

- `vac = F₀ = F0` $=|0\rangle$ in the number state representation,
- `F₁ = F1` $=|1\rangle$ in the number state representation.

To create quantum analogues of a classical harmonic oscillator, or monochromatic electromagnetic waves, we can define a coherent (a.k.a. semi-classical) state $|\alpha\rangle$, where $\alpha$ is a complex amplitude, with `CoherentState(α::Number)`:

```jldoctest
julia> c = CoherentState(im)
|im⟩
```
!!! note "Naming convention for quantum harmonic oscillator bases"
The defined basis for arbitrary symbolic bosonic states is a `FockBasis` object, due to a shared naming interface for Quantum physics packages. For instance, the command `basis(CoherentState(im))` will output `Fock(cutoff=Inf)`. This may lead to confusion, as not all bosonic states are Fock states. However, this is simply a naming convention for the basis, and symbolic and numerical results are not affected by it.

## Operators

Operations on bosonic states are supported, and can be simplified with `qsimplify` and its rewriter `qsimplify_fock`. For instance, we can apply the raising (creation) $\hat{a}^{\dagger}$ and lowering (annihilation or destroy) $\hat{a}$ operators on a Fock state as follows:

```jldoctest
julia> f = FockState(3);

julia> raise = Create*f
a†|3⟩

julia> qsimplify(raise, rewriter=qsimplify_fock)
(sqrt(4))|4⟩

julia> lower = Destroy*f
a|3⟩

julia> qsimplify(lower, rewriter=qsimplify_fock)
(sqrt(3))|2⟩
```
Or, we can apply the number operator $\hat{n}$ to our Fock state:

```jldoctest
julia> f = FockState(3);

julia> num = N*f
n|3⟩

julia> qsimplify(num, rewriter=qsimplify_fock)
3|3⟩
```

Constants are defined for number and ladder operators in unicode and ASCII:

- `N = n̂` $=\hat{n}$,
- `Create = âꜛ` $=\hat{a}^{\dagger}$,
- `Destroy = â` $=\hat{a}$.

Phase-shift $U(\theta)$ and displacement $D(\alpha)$ operators, defined respectively as
$$U(\theta) = \exp\left(-i\theta\hat{n}\right) \quad \text{and} \quad D(\alpha) = \exp\left(\alpha\hat{a}^{\dagger} - \alpha\hat{a}\right),$$
can be defined with usual simplification rules. Consider the following example:

```jldoctest
julia> displace = DisplaceOp(im)
D(im)

julia> c = qsimplify(displace*vac, rewriter=qsimplify_fock)
|im⟩

julia> phase = PhaseShiftOp(pi)
U(π)

julia> qsimplify(phase*c, rewriter=qsimplify_fock)
|1.2246467991473532e-16 - 1.0im⟩
```
Here, we generated a coherent state $|i\rangle$ from the vacuum state $|0\rangle$ by applying the displacement operator defined by `DisplaceOp`. Then, we shifted its phase by $\pi$ with the phase shift operator (which is called with `PhaseShiftOp`) to get the result $|-i\rangle$.

Summarized below are supported bosonic operators.

- Number operator: `NumberOp()`,
- Creation operator: `CreateOp()`,
- Annihilation operator: `DestroyOp()`,
- Phase-shift operator: `PhaseShiftOp(phase::Number)`,
- Displacement operator: `DisplaceOp(alpha::Number)`.

## Numerical Conversions to QuantumOptics.jl

Bosonic systems can be translated to the ket representation with `express`. For instance:

```jldoctest
julia> f = FockState(1);

julia> express(f)
Ket(dim=3)
basis: Fock(cutoff=2)
0.0 + 0.0im
1.0 + 0.0im
0.0 + 0.0im

julia> express(Create) |> dense
Operator(dim=3x3)
basis: Fock(cutoff=2)
0.0+0.0im 0.0+0.0im 0.0+0.0im
1.0+0.0im 0.0+0.0im 0.0+0.0im
0.0+0.0im 1.41421+0.0im 0.0+0.0im

julia> express(Create*f)
Ket(dim=3)
basis: Fock(cutoff=2)
0.0 + 0.0im
0.0 + 0.0im
1.4142135623730951 + 0.0im

julia> express(Destroy*f)
Ket(dim=3)
basis: Fock(cutoff=2)
1.0 + 0.0im
0.0 + 0.0im
0.0 + 0.0im
```

!!! warning "Cutoff specifications for numerical representations of quantum harmonic oscillators"
Symbolic bosonic states and operators are naturally represented in an infinite dimension basis. For numerical conversions of such quantum objects, a finite cutoff of the highest allowed state must be defined. By default, the basis dimension of numerical conversions is set to 3 (so the number representation cutoff is 2), as demonstrated above. To define a different cutoff, one must customize the `QuantumOpticsRepr` instance, e.g. provide `QuantumOpticsRepr(cutoff=n::Int)` to `express`.

If we wish to specify a different numerical cutoff, say 4, to the previous examples, then we rewrite them as follows:

```jldoctest
julia> f = FockState(1);

julia> express(f, QuantumOpticsRepr(cutoff=4))
Ket(dim=5)
basis: Fock(cutoff=4)
0.0 + 0.0im
1.0 + 0.0im
0.0 + 0.0im
0.0 + 0.0im
0.0 + 0.0im

julia> express(Create, QuantumOpticsRepr(4)) |> dense
Operator(dim=5x5)
basis: Fock(cutoff=4)
0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im
1.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im
0.0+0.0im 1.41421+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im
0.0+0.0im 0.0+0.0im 1.73205+0.0im 0.0+0.0im 0.0+0.0im
0.0+0.0im 0.0+0.0im 0.0+0.0im 2.0+0.0im 0.0+0.0im
```
27 changes: 24 additions & 3 deletions docs/src/express.md
Original file line number Diff line number Diff line change
Expand Up @@ -6,15 +6,16 @@ DocTestSetup = quote
end
```

A principle feature of `QuantumSymbolics` is to numerically represent symbolic quantum expressions in various formalisms using [`express`](@ref). In particular, one can translate symbolic logic to back-end toolboxes such as `QuantumOptics.jl` or `QuantumClifford.jl` for simulating quantum systems with great flexibiity.
A principle feature of `QuantumSymbolics` is to numerically represent symbolic quantum expressions in various formalisms using [`express`](@ref). In particular, one can translate symbolic logic to back-end toolboxes such as [`QuantumOptics.jl`](https://github.com/qojulia/QuantumOptics.jl) or [`QuantumClifford.jl`](https://github.com/QuantumSavory/QuantumClifford.jl) for simulating quantum systems with great flexibiity.

As a straightforward example, consider the spin-up state $|\uparrow\rangle = |0\rangle$, the eigenstate of the Pauli operator $Z$, which can be expressed in `QuantumSymbolics` as follows:

```@example 1
using QuantumSymbolics, QuantumClifford, QuantumOptics # hide
ψ = Z1
```
Using [`express`](@ref), we can translate this symbolic object into its numerical state vector form in `QuantumOptics.jl`.

Using [`express`](@ref), we can translate this symbolic object into its numerical state vector form in [`QuantumOptics.jl`](https://github.com/qojulia/QuantumOptics.jl).

```@example 1
express(ψ)
Expand All @@ -26,7 +27,7 @@ By default, [`express`](@ref) converts a quantum object with `QuantumOpticRepr`.
ψ.metadata
```

The caching feature of [`express`](@ref) prevents a specific representation for a symbolic quantum object from being computed more than once. This becomes handy for translations of more complex operations, which can become computationally expensive. We also have the ability to express $|Z_1\rangle$ in the Clifford formalism with `QuantumClifford.jl`:
The caching feature of [`express`](@ref) prevents a specific representation for a symbolic quantum object from being computed more than once. This becomes handy for translations of more complex operations, which can become computationally expensive. We also have the ability to express $|Z_1\rangle$ in the Clifford formalism with [`QuantumClifford.jl`](https://github.com/QuantumSavory/QuantumClifford.jl):

```@example 1
express(ψ, CliffordRepr())
Expand Down Expand Up @@ -56,4 +57,24 @@ julia> express(σʸ, CliffordRepr(), UseAsObservable())

julia> express(σʸ, CliffordRepr(), UseAsOperation())
sY
```

Another edge case is translations with `QuantumOpticsRepr`, where we can additionally define a finite cutoff for bosonic states and operators, as discussed in the [quantum harmonic oscillators page](@ref Quantum-Harmonic-Oscillators). The default cutoff for such objects is 2, however a different cutoff can be specified by passing an integer to `QuantumOpticsRepr` in an `express` call. Let us see an example with the number operator:

```jldoctest
julia> express(N) |> dense
Operator(dim=3x3)
basis: Fock(cutoff=2)
0.0+0.0im 0.0+0.0im 0.0+0.0im
0.0+0.0im 1.0+0.0im 0.0+0.0im
0.0+0.0im 0.0+0.0im 2.0+0.0im

julia> express(N, QuantumOpticsRepr(cutoff=4)) |> dense
Operator(dim=5x5)
basis: Fock(cutoff=4)
0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im
0.0+0.0im 1.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im
0.0+0.0im 0.0+0.0im 2.0+0.0im 0.0+0.0im 0.0+0.0im
0.0+0.0im 0.0+0.0im 0.0+0.0im 3.0+0.0im 0.0+0.0im
0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 4.0+0.0im
```
37 changes: 9 additions & 28 deletions ext/QuantumOpticsExt/QuantumOpticsExt.jl
Original file line number Diff line number Diff line change
@@ -1,13 +1,14 @@
module QuantumOpticsExt

using QuantumInterface, QuantumOpticsBase
using QuantumInterface: samebases
using QuantumSymbolics
using QuantumSymbolics:
HGate, XGate, YGate, ZGate, CPHASEGate, CNOTGate, PauliP, PauliM,
XCXGate, XCYGate, XCZGate, YCXGate, YCYGate, YCZGate, ZCXGate, ZCYGate, ZCZGate,
XBasisState, YBasisState, ZBasisState,
NumberOp, CreateOp, DestroyOp,
FockBasisState,
apkille marked this conversation as resolved.
Show resolved Hide resolved
FockState,
MixedState, IdentityOp,
qubit_basis, inf_fock_basis
import QuantumSymbolics: express, express_nolookup
Expand Down Expand Up @@ -70,34 +71,14 @@ express_nolookup(s::XBasisState, ::QuantumOpticsRepr) = (_s₊,_s₋)[s.idx]
express_nolookup(s::YBasisState, ::QuantumOpticsRepr) = (_i₊,_i₋)[s.idx]
express_nolookup(s::ZBasisState, ::QuantumOpticsRepr) = (_l0,_l1)[s.idx]

function express_nolookup(o::FockBasisState, r::QuantumOpticsRepr)
@warn "Fock space cutoff is not specified so we default to 2"
@assert o.idx<2 "without a specified cutoff you can not create states higher than 1 photon"
return (_f0₂,_f1₂)[o.idx+1]
end
function express_nolookup(o::NumberOp, r::QuantumOpticsRepr)
@warn "Fock space cutoff is not specified so we default to 2"
return _n₂
end
function express_nolookup(o::CreateOp, r::QuantumOpticsRepr)
@warn "Fock space cutoff is not specified so we default to 2"
return _ad₂
end
function express_nolookup(o::DestroyOp, r::QuantumOpticsRepr)
@warn "Fock space cutoff is not specified so we default to 2"
return _a₂
end

express_nolookup(s::FockState, r::QuantumOpticsRepr) = fockstate(FockBasis(r.fock_cutoff),s.idx)
express_nolookup(s::CoherentState, r::QuantumOpticsRepr) = coherentstate(FockBasis(r.fock_cutoff),s.alpha)
express_nolookup(o::NumberOp, r::QuantumOpticsRepr) = number(FockBasis(r.fock_cutoff))
express_nolookup(o::CreateOp, r::QuantumOpticsRepr) = create(FockBasis(r.fock_cutoff))
express_nolookup(o::DestroyOp, r::QuantumOpticsRepr) = destroy(FockBasis(r.fock_cutoff))
express_nolookup(o::DisplaceOp, r::QuantumOpticsRepr) = displace(FockBasis(r.fock_cutoff), o.alpha)
express_nolookup(x::MixedState, ::QuantumOpticsRepr) = identityoperator(basis(x))/length(basis(x)) # TODO there is probably a more efficient way to represent it
function express_nolookup(x::IdentityOp, ::QuantumOpticsRepr)
b = basis(x)
if b!=inf_fock_basis
return identityoperator(basis(x)) # TODO there is probably a more efficient way to represent it
else
@warn "Fock space cutoff is not specified so we default to 2"
apkille marked this conversation as resolved.
Show resolved Hide resolved
return identityoperator(_bf2)
end
end
express_nolookup(x::IdentityOp, r::QuantumOpticsRepr) = identityoperator(FockBasis(r.fock_cutoff))

express_nolookup(p::PauliNoiseCPTP, ::QuantumOpticsRepr) = LazySuperSum(SpinBasis(1//2), [1-p.px-p.py-p.pz,p.px,p.py,p.pz],
[LazyPrePost(_id,_id),LazyPrePost(_x,_x),LazyPrePost(_y,_y),LazyPrePost(_z,_z)])
Expand Down
12 changes: 6 additions & 6 deletions src/QSymbolicsBase/QSymbolicsBase.jl
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
using Symbolics
import Symbolics: simplify
import Symbolics: simplify,Term
using SymbolicUtils
import SymbolicUtils: Symbolic,_isone,flatten_term,isnotflat,Chain,Fixpoint,Prewalk,sorted_arguments
using TermInterface
Expand Down Expand Up @@ -27,7 +27,7 @@ export SymQObj,QObj,
I,X,Y,Z,σˣ,σʸ,σᶻ,Pm,Pp,σ₋,σ₊,
H,CNOT,CPHASE,XCX,XCY,XCZ,YCX,YCY,YCZ,ZCX,ZCY,ZCZ,
X1,X2,Y1,Y2,Z1,Z2,X₁,X₂,Y₁,Y₂,Z₁,Z₂,L0,L1,Lp,Lm,Lpi,Lmi,L₀,L₁,L₊,L₋,L₊ᵢ,L₋ᵢ,
vac,F₀,F0,F₁,F1,
vac,F₀,F0,F₁,F1,inf_fock_basis,
apkille marked this conversation as resolved.
Show resolved Hide resolved
N,n̂,Create,âꜛ,Destroy,â,basis,SpinBasis,FockBasis,
SBra,SKet,SOperator,SHermitianOperator,SUnitaryOperator,SHermitianUnitaryOperator,SSuperOperator,
@ket,@bra,@op,@superop,
Expand All @@ -39,10 +39,10 @@ export SymQObj,QObj,
MixedState,IdentityOp,
SApplyKet,SApplyBra,SMulOperator,SSuperOpApply,SCommutator,SAnticommutator,SBraKet,SOuterKetBra,
HGate,XGate,YGate,ZGate,CPHASEGate,CNOTGate,
XBasisState,YBasisState,ZBasisState,
NumberOp,CreateOp,DestroyOp,
XBasisState,YBasisState,ZBasisState,FockState,CoherentState,
NumberOp,CreateOp,DestroyOp,PhaseShiftOp,DisplaceOp,
XCXGate,XCYGate,XCZGate,YCXGate,YCYGate,YCZGate,ZCXGate,ZCYGate,ZCZGate,
qsimplify,qsimplify_pauli,qsimplify_commutator,qsimplify_anticommutator,
qsimplify,qsimplify_pauli,qsimplify_commutator,qsimplify_anticommutator,qsimplify_fock,
qexpand,
isunitary,
KrausRepr,kraus
Expand Down Expand Up @@ -144,7 +144,6 @@ end
Base.isequal(::SymQObj, ::Symbolic{Complex}) = false
Base.isequal(::Symbolic{Complex}, ::SymQObj) = false


# TODO check that this does not cause incredibly bad runtime performance
# use a macro to provide specializations if that is indeed the case
propsequal(x,y) = all(n->(n==:metadata || isequal(getproperty(x,n),getproperty(y,n))), propertynames(x))
Expand All @@ -167,6 +166,7 @@ include("basic_superops.jl")
include("linalg.jl")
include("predefined.jl")
include("predefined_CPTP.jl")
include("predefined_fock.jl")

##
# Symbolic and simplification rules
Expand Down
12 changes: 11 additions & 1 deletion src/QSymbolicsBase/express.jl
Original file line number Diff line number Diff line change
Expand Up @@ -78,7 +78,17 @@ end
##

"""Representation using kets, bras, density matrices, and superoperators governed by `QuantumOptics.jl`."""
struct QuantumOpticsRepr <: AbstractRepresentation end
struct QuantumOpticsRepr <: AbstractRepresentation
fock_cutoff::Union{Nothing, Int}
function QuantumOpticsRepr(fock_cutoff::Union{Nothing, Int})
apkille marked this conversation as resolved.
Show resolved Hide resolved
if isnothing(fock_cutoff)
return new(2)
else
return new(fock_cutoff)
end
end
end
QuantumOpticsRepr() = QuantumOpticsRepr(nothing)
"""Similar to `QuantumOpticsRepr`, but using trajectories instead of superoperators."""
struct QuantumMCRepr <: AbstractRepresentation end
"""Representation using tableaux governed by `QuantumClifford.jl`"""
Expand Down
Loading
Loading