-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
209 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,209 @@ | ||
#!/usr/bin/env python3 | ||
# -*- coding: utf-8 -*- | ||
""" | ||
Created on Mon May 8 09:21:03 2023 | ||
@author: Dhruv | ||
""" | ||
|
||
import numpy as np | ||
import pandas as pd | ||
import scipy.io | ||
import pynapple as nap | ||
import os, sys | ||
import matplotlib.pyplot as plt | ||
from matplotlib.colors import hsv_to_rgb | ||
import scipy.signal | ||
from sklearn.manifold import Isomap | ||
|
||
#%% | ||
|
||
# data_directory = '/media/DataDhruv/Dropbox (Peyrache Lab)/Peyrache Lab Team Folder/Data/AdrianPoSub/###AllPoSub' | ||
data_directory = '/media/adrien/LaCie/PoSub-UPState/Data/###AllPoSub' | ||
# datasets = np.genfromtxt(os.path.join(data_directory,'dataset_Hor_DM.list'), delimiter = '\n', dtype = str, comments = '#') | ||
datasets = np.genfromtxt(os.path.join(data_directory,'dataset_test.list'), delimiter = '\n', dtype = str, comments = '#') | ||
|
||
rwpath = '/media/adrien/LaCie/PoSub-UPState/Project/Data' | ||
|
||
alltruex = [] | ||
alltruey = [] | ||
|
||
for s in datasets: | ||
print(s) | ||
name = s.split('/')[-1] | ||
path = os.path.join(data_directory, s) | ||
rawpath = os.path.join(rwpath,s) | ||
|
||
data = nap.load_session(rawpath, 'neurosuite') | ||
data.load_neurosuite_xml(rawpath) | ||
spikes = data.spikes | ||
epochs = data.epochs | ||
|
||
# ############################################################################################### | ||
# # LOAD MAT FILES | ||
# ############################################################################################### | ||
filepath = os.path.join(path, 'Analysis') | ||
listdir = os.listdir(filepath) | ||
file = [f for f in listdir if 'BehavEpochs' in f] | ||
behepochs = scipy.io.loadmat(os.path.join(filepath,file[0])) | ||
|
||
file = [f for f in listdir if 'CellDepth' in f] | ||
celldepth = scipy.io.loadmat(os.path.join(filepath,file[0])) | ||
depth = celldepth['cellDep'] | ||
|
||
file = [f for f in listdir if 'MeanFR' in f] | ||
mfr = scipy.io.loadmat(os.path.join(filepath,file[0])) | ||
r_wake = mfr['rateS'] | ||
|
||
file = [f for f in listdir if 'Layers' in f] | ||
lyr = scipy.io.loadmat(os.path.join(filepath,file[0])) | ||
layer = lyr['l'] | ||
|
||
file = [f for f in listdir if 'Velocity' in f] | ||
vl = scipy.io.loadmat(os.path.join(filepath,file[0]), simplify_cells = True) | ||
vel = nap.Tsd(t = vl['vel']['t'], d = vl['vel']['data'] ) | ||
|
||
file = [f for f in listdir if 'CellTypes' in f] | ||
celltype = scipy.io.loadmat(os.path.join(filepath,file[0])) | ||
|
||
pyr = [] | ||
interneuron = [] | ||
hd = [] | ||
|
||
for i in range(len(spikes)): | ||
if celltype['ex'][i] == 1 and celltype['gd'][i] == 1: | ||
pyr.append(i) | ||
|
||
for i in range(len(spikes)): | ||
if celltype['fs'][i] == 1 and celltype['gd'][i] == 1: | ||
interneuron.append(i) | ||
|
||
for i in range(len(spikes)): | ||
if celltype['hd'][i] == 1 and celltype['gd'][i] == 1: | ||
hd.append(i) | ||
|
||
|
||
#%% | ||
|
||
# ############################################################################################### | ||
# # LOAD UP AND DOWN STATE, NEW SWS AND NEW WAKE EPOCHS | ||
# ############################################################################################### | ||
|
||
|
||
file = os.path.join(rawpath, name +'.evt.py.dow') | ||
if os.path.exists(file): | ||
tmp = np.genfromtxt(file)[:,0] | ||
tmp = tmp.reshape(len(tmp)//2,2)/1000 | ||
down_ep = nap.IntervalSet(start = tmp[:,0], end = tmp[:,1], time_units = 's') | ||
|
||
file = os.path.join(rawpath, name +'.evt.py.upp') | ||
if os.path.exists(file): | ||
tmp = np.genfromtxt(file)[:,0] | ||
tmp = tmp.reshape(len(tmp)//2,2)/1000 | ||
up_ep = nap.IntervalSet(start = tmp[:,0], end = tmp[:,1], time_units = 's') | ||
|
||
file = os.path.join(rawpath, name +'.DM.new_sws.evt') | ||
if os.path.exists(file): | ||
tmp = np.genfromtxt(file)[:,0] | ||
tmp = tmp.reshape(len(tmp)//2,2)/1000 | ||
new_sws_ep = nap.IntervalSet(start = tmp[:,0], end = tmp[:,1], time_units = 's') | ||
|
||
file = os.path.join(rawpath, name +'.DM.new_wake.evt') | ||
if os.path.exists(file): | ||
tmp = np.genfromtxt(file)[:,0] | ||
tmp = tmp.reshape(len(tmp)//2,2)/1000 | ||
new_wake_ep = nap.IntervalSet(start = tmp[:,0], end = tmp[:,1], time_units = 's') | ||
|
||
#%% | ||
|
||
filepath = os.path.join(path, 'Analysis') | ||
data = pd.read_csv(filepath + '/Tracking_data.csv', header = None) | ||
position = pd.DataFrame(index = data[0].values, data = data[[1,2,3]].values, columns=['x', 'y', 'ang']) | ||
position = position.loc[~position.index.duplicated(keep='first')] | ||
position['ang'] = position['ang'] *(np.pi/180) #convert degrees to radian | ||
position['ang'] = (position['ang'] + 2*np.pi) % (2*np.pi) #convert [-pi, pi] to [0, 2pi] | ||
position = nap.TsdFrame(position) | ||
position = position.restrict(epochs['wake']) | ||
|
||
angle = position['ang'].loc[vel.index.values] | ||
|
||
#%% Wake binning | ||
|
||
wake_bin = 0.2 #0.4 #400ms binwidth | ||
|
||
ep = epochs['wake'] | ||
|
||
dx = position['x'].bin_average(wake_bin,ep) | ||
dy = position['y'].bin_average(wake_bin,ep) | ||
ang = angle.bin_average(wake_bin, ep) | ||
v = vel.bin_average(wake_bin,ep) | ||
|
||
v = v.threshold(2) | ||
|
||
ang = ang.loc[v.index.values] | ||
|
||
wake_count = spikes[hd].count(wake_bin, ep) | ||
wake_count = wake_count.loc[v.index.values] | ||
|
||
wake_count = wake_count.as_dataframe() | ||
wake_rate = np.sqrt(wake_count/wake_bin) | ||
wake_rate = wake_rate.rolling(window = 50, win_type = 'gaussian', center = True, min_periods = 1, axis = 0).mean(std = 3) | ||
|
||
ang = ang.dropna() | ||
ang = ang.rename('ang') | ||
|
||
wake_rate = wake_rate.loc[ang.index.values] | ||
|
||
wake_rate = pd.concat([wake_rate, pd.DataFrame(ang)], axis = 1) | ||
wake_rate = wake_rate.sample(frac = 0.5).sort_index() | ||
|
||
#%% Sleep binning | ||
|
||
sleep_dt = 0.01 #0.015 #0.025 #0.015 | ||
sleep_binwidth = 0.05 #0.1 #0.03 | ||
|
||
tokeep = np.where((up_ep['end'] - up_ep['start']) > 0.5) | ||
|
||
du = nap.IntervalSet(start = up_ep.iloc[tokeep]['start'] - 0.25, end = up_ep.iloc[tokeep]['start'] + 0.25) | ||
longdu = nap.IntervalSet(start = up_ep.iloc[tokeep]['start'] - 0.25, end = up_ep.iloc[tokeep]['start'] + 0.5) | ||
|
||
num_overlapping_bins = int(sleep_binwidth/sleep_dt) | ||
|
||
sleep_count = spikes[hd].count(sleep_dt,longdu) | ||
sleep_count = sleep_count.as_dataframe() | ||
sleep_rate = np.sqrt(sleep_count/sleep_dt) | ||
sleep_rate = sleep_rate.rolling(window = num_overlapping_bins, win_type = 'gaussian', center = True, min_periods = 1, axis = 0).mean(std = 3) | ||
|
||
fit_rate = nap.TsdFrame(sleep_rate).restrict(du) | ||
|
||
rate = np.vstack([wake_rate.loc[:, wake_rate.columns != 'ang'].values, fit_rate.as_dataframe().sample(frac = 0.01).values]) #Take 1000 random values | ||
|
||
fit = Isomap(n_components = 2, n_neighbors = 200).fit(rate) | ||
p_wake = fit.transform(wake_rate.loc[:, wake_rate.columns != 'ang']) | ||
p_sleep = fit.transform(sleep_rate) | ||
|
||
|
||
H = wake_rate['ang'].values/(2*np.pi) | ||
HSV = np.vstack((H, np.ones_like(H), np.ones_like(H))).T | ||
RGB = hsv_to_rgb(HSV) | ||
|
||
truex = p_sleep[np.where(sleep_rate.sum(axis=1)==0)][0][0] | ||
truey = p_sleep[np.where(sleep_rate.sum(axis=1)==0)][0][1] | ||
|
||
alltruex.append(truex) | ||
alltruey.append(truey) | ||
|
||
p_wake = p_wake - [truex, truey] | ||
p_sleep = p_sleep - [truex, truey] | ||
|
||
projection = nap.TsdFrame(t = sleep_rate.index.values, d = p_sleep, columns = ['x', 'y']) | ||
projection.to_pickle(rawpath + '/' + s + '_projection.pkl') | ||
|
||
np.save(rawpath + '/' + s + '_pwake.npy',p_wake) | ||
np.save(rawpath + '/' + s + '_RGB.npy', RGB) | ||
|
||
#%% | ||
|
||
np.save(rwpath + '/alltruex.npy' , alltruex) | ||
np.save(rwpath + '/alltruey.npy' , alltruey) | ||
|