-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
7 changed files
with
654 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,83 @@ | ||
#!/usr/bin/env python3 | ||
# -*- coding: utf-8 -*- | ||
""" | ||
Created on Fri Sep 15 16:05:14 2023 | ||
@author: dhruv | ||
""" | ||
|
||
#import dependencies | ||
import numpy as np | ||
import pandas as pd | ||
import scipy.io | ||
import pynapple as nap | ||
import os | ||
import matplotlib.pyplot as plt | ||
from scipy.stats import kendalltau | ||
|
||
#%% Data organization | ||
|
||
data_directory = '/media/DataDhruv/Dropbox (Peyrache Lab)/Peyrache Lab Team Folder/Data/AdrianPoSub/###AllPoSub' | ||
datasets = np.genfromtxt(os.path.join(data_directory,'dataset_Hor_DM.list'), delimiter = '\n', dtype = str, comments = '#') | ||
|
||
readpath = '/media/DataDhruv/Dropbox (Peyrache Lab)/Peyrache Lab Team Folder/Projects/PoSub-UPstate/Data' | ||
writepath = '/home/dhruv/Code/MehrotraLevenstein_2023/Analysis/OutputFiles' | ||
|
||
s = 'A3707-200317' | ||
name = s.split('/')[-1] | ||
path = os.path.join(data_directory, s) | ||
rawpath = os.path.join(readpath,s) | ||
|
||
#%% Loading the data | ||
|
||
data = nap.load_session(rawpath, 'neurosuite') | ||
data.load_neurosuite_xml(rawpath) | ||
spikes = data.spikes | ||
|
||
#%% Load cell types | ||
|
||
filepath = os.path.join(path, 'Analysis') | ||
listdir = os.listdir(filepath) | ||
file = [f for f in listdir if 'CellTypes' in f] | ||
celltype = scipy.io.loadmat(os.path.join(filepath,file[0])) | ||
|
||
pyr = [] | ||
interneuron = [] | ||
hd = [] | ||
|
||
for i in range(len(spikes)): | ||
if celltype['ex'][i] == 1 and celltype['gd'][i] == 1: | ||
pyr.append(i) | ||
|
||
for i in range(len(spikes)): | ||
if celltype['fs'][i] == 1 and celltype['gd'][i] == 1: | ||
interneuron.append(i) | ||
|
||
for i in range(len(spikes)): | ||
if celltype['hd'][i] == 1 and celltype['gd'][i] == 1: | ||
hd.append(i) | ||
|
||
#%% Load UP and DOWN states | ||
|
||
file = os.path.join(writepath, name +'.evt.py.dow') | ||
down_ep = data.read_neuroscope_intervals(name = 'DOWN', path2file = file) | ||
|
||
file = os.path.join(writepath, name +'.evt.py.upp') | ||
up_ep = data.read_neuroscope_intervals(name = 'UP', path2file = file) | ||
|
||
#%% Compute PETH | ||
|
||
cc2 = nap.compute_eventcorrelogram(spikes, nap.Tsd(up_ep['start'].values), binsize = 0.005, windowsize = 0.255, ep = up_ep, norm = True) | ||
tmp = pd.DataFrame(cc2) | ||
tmp = tmp.rolling(window=8, win_type='gaussian',center=True,min_periods=1).mean(std = 2) | ||
|
||
#%% Example units | ||
|
||
plt.figure() | ||
plt.plot(tmp[pyr][23][-0.05:0.2]) | ||
plt.plot(tmp[pyr][50][-0.05:0.2]) | ||
plt.axhline(1, linestyle = '--', color = 'silver') | ||
plt.axvline(0, color = 'k') | ||
plt.yticks([1], ['mean rate']) | ||
plt.xticks([0], ['DU']) | ||
plt.gca().set_box_aspect(1) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,116 @@ | ||
#!/usr/bin/env python3 | ||
# -*- coding: utf-8 -*- | ||
""" | ||
Created on Fri Sep 15 10:01:54 2023 | ||
@author: dhruv | ||
""" | ||
#import dependencies | ||
import numpy as np | ||
import pandas as pd | ||
import scipy.io | ||
import pynapple as nap | ||
import os | ||
import matplotlib.pyplot as plt | ||
from scipy.stats import kendalltau | ||
|
||
#%% Data organization | ||
|
||
data_directory = '/media/DataDhruv/Dropbox (Peyrache Lab)/Peyrache Lab Team Folder/Data/AdrianPoSub/###AllPoSub' | ||
datasets = np.genfromtxt(os.path.join(data_directory,'dataset_Hor_DM.list'), delimiter = '\n', dtype = str, comments = '#') | ||
|
||
readpath = '/media/DataDhruv/Dropbox (Peyrache Lab)/Peyrache Lab Team Folder/Projects/PoSub-UPstate/Data' | ||
writepath = '/home/dhruv/Code/MehrotraLevenstein_2023/Analysis/OutputFiles' | ||
|
||
uponset = [] | ||
PMR = [] | ||
|
||
for s in datasets: | ||
print(s) | ||
name = s.split('/')[-1] | ||
path = os.path.join(data_directory, s) | ||
rawpath = os.path.join(readpath,s) | ||
|
||
###Loading the data | ||
data = nap.load_session(rawpath, 'neurosuite') | ||
data.load_neurosuite_xml(rawpath) | ||
spikes = data.spikes | ||
|
||
###Load cell types | ||
filepath = os.path.join(path, 'Analysis') | ||
listdir = os.listdir(filepath) | ||
file = [f for f in listdir if 'CellTypes' in f] | ||
celltype = scipy.io.loadmat(os.path.join(filepath,file[0])) | ||
|
||
pyr = [] | ||
interneuron = [] | ||
hd = [] | ||
|
||
for i in range(len(spikes)): | ||
if celltype['ex'][i] == 1 and celltype['gd'][i] == 1: | ||
pyr.append(i) | ||
|
||
for i in range(len(spikes)): | ||
if celltype['fs'][i] == 1 and celltype['gd'][i] == 1: | ||
interneuron.append(i) | ||
|
||
for i in range(len(spikes)): | ||
if celltype['hd'][i] == 1 and celltype['gd'][i] == 1: | ||
hd.append(i) | ||
|
||
###Load UP and DOWN states | ||
file = os.path.join(writepath, name +'.evt.py.dow') | ||
down_ep = data.read_neuroscope_intervals(name = 'DOWN', path2file = file) | ||
|
||
file = os.path.join(writepath, name +'.evt.py.upp') | ||
up_ep = data.read_neuroscope_intervals(name = 'UP', path2file = file) | ||
|
||
#%% Compute PETH | ||
|
||
cc2 = nap.compute_eventcorrelogram(spikes, nap.Tsd(up_ep['start'].values), binsize = 0.005, windowsize = 0.255, ep = up_ep, norm = True) | ||
tmp = pd.DataFrame(cc2) | ||
tmp = tmp.rolling(window=8, win_type='gaussian',center=True,min_periods=1).mean(std = 2) | ||
dd2 = tmp[0:0.155] | ||
|
||
#Only EX cells | ||
ee = dd2[pyr] | ||
|
||
#%% Compute peak-to-mean ratio (PMR) and UP onset delay | ||
|
||
for i in range(len(ee.columns)): | ||
a = np.where(ee.iloc[:,i] > 0.5) | ||
if len(a[0]) > 0: | ||
PMR.append(ee.iloc[:,i].max()) | ||
res = ee.iloc[:,i].index[a] | ||
uponset.append(res[0]) | ||
|
||
#%% Plotting | ||
|
||
binsize = 0.005 #In seconds | ||
(counts,onsetbins,peakbins) = np.histogram2d(uponset, PMR, | ||
bins=[len(np.arange(0, 0.155, binsize))+1, len(np.arange(0, 0.155, binsize)) + 1], | ||
range = [[-0.0025, 0.1575],[0.5, 3.6]]) | ||
|
||
masked_array = np.ma.masked_where(counts == 0, counts) | ||
cmap = plt.cm.viridis | ||
cmap.set_bad(color='white') | ||
|
||
plt.figure() | ||
plt.imshow(masked_array.T, origin='lower', extent = [onsetbins[0], onsetbins[-1], peakbins[0], peakbins[-1]], | ||
aspect = 'auto', cmap = cmap) | ||
plt.colorbar(ticks = [min(counts.flatten()) + 1, max(counts.flatten())], label = '# cells') | ||
plt.xlabel('UP onset delay (s)') | ||
plt.ylabel('PMR') | ||
plt.gca().set_box_aspect(1) | ||
|
||
y_est = np.zeros(len(uponset)) | ||
m, b = np.polyfit(uponset, PMR, 1) | ||
for i in range(len(uponset)): | ||
y_est[i] = m*uponset[i] | ||
|
||
plt.plot(uponset, y_est + b, color = 'r', zorder = 3) | ||
plt.axhline(1, color ='k', linestyle = '--') | ||
|
||
#%% Stats | ||
|
||
corr, p = kendalltau(uponset, PMR) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,172 @@ | ||
#!/usr/bin/env python3 | ||
# -*- coding: utf-8 -*- | ||
""" | ||
Created on Fri Sep 15 11:44:08 2023 | ||
@author: dhruv | ||
""" | ||
|
||
#import dependencies | ||
import numpy as np | ||
import pandas as pd | ||
import scipy.io | ||
import pynapple as nap | ||
import os | ||
import matplotlib.pyplot as plt | ||
from itertools import combinations | ||
from scipy.stats import pearsonr | ||
from sklearn.manifold import Isomap | ||
|
||
#%% Data organization | ||
|
||
data_directory = '/media/DataDhruv/Dropbox (Peyrache Lab)/Peyrache Lab Team Folder/Data/AdrianPoSub/###AllPoSub' | ||
datasets = np.genfromtxt(os.path.join(data_directory,'dataset_Hor_DM.list'), delimiter = '\n', dtype = str, comments = '#') | ||
|
||
readpath = '/media/DataDhruv/Dropbox (Peyrache Lab)/Peyrache Lab Team Folder/Projects/PoSub-UPstate/Data' | ||
writepath = '/home/dhruv/Code/MehrotraLevenstein_2023/Analysis/OutputFiles' | ||
|
||
allPETH = pd.DataFrame() | ||
uponset = [] | ||
PMR = [] | ||
|
||
for s in datasets: | ||
print(s) | ||
name = s.split('/')[-1] | ||
path = os.path.join(data_directory, s) | ||
rawpath = os.path.join(readpath,s) | ||
|
||
###Loading the data | ||
data = nap.load_session(rawpath, 'neurosuite') | ||
data.load_neurosuite_xml(rawpath) | ||
spikes = data.spikes | ||
|
||
###Load cell types | ||
filepath = os.path.join(path, 'Analysis') | ||
listdir = os.listdir(filepath) | ||
|
||
file = [f for f in listdir if 'CellDepth' in f] | ||
celldepth = scipy.io.loadmat(os.path.join(filepath,file[0])) | ||
depth = celldepth['cellDep'] | ||
|
||
|
||
file = [f for f in listdir if 'CellTypes' in f] | ||
celltype = scipy.io.loadmat(os.path.join(filepath,file[0])) | ||
|
||
pyr = [] | ||
interneuron = [] | ||
hd = [] | ||
|
||
for i in range(len(spikes)): | ||
if celltype['ex'][i] == 1 and celltype['gd'][i] == 1: | ||
pyr.append(i) | ||
|
||
for i in range(len(spikes)): | ||
if celltype['fs'][i] == 1 and celltype['gd'][i] == 1: | ||
interneuron.append(i) | ||
|
||
for i in range(len(spikes)): | ||
if celltype['hd'][i] == 1 and celltype['gd'][i] == 1: | ||
hd.append(i) | ||
|
||
###Load UP and DOWN states | ||
file = os.path.join(writepath, name +'.evt.py.dow') | ||
down_ep = data.read_neuroscope_intervals(name = 'DOWN', path2file = file) | ||
|
||
file = os.path.join(writepath, name +'.evt.py.upp') | ||
up_ep = data.read_neuroscope_intervals(name = 'UP', path2file = file) | ||
|
||
#%% Compute PETH | ||
|
||
cc2 = nap.compute_eventcorrelogram(spikes, nap.Tsd(up_ep['start'].values), binsize = 0.005, windowsize = 0.255, ep = up_ep, norm = True) | ||
tmp = pd.DataFrame(cc2) | ||
tmp = tmp.rolling(window=8, win_type='gaussian',center=True,min_periods=1).mean(std = 2) | ||
dd2 = tmp[0:0.155] | ||
|
||
#Only EX cells | ||
ee = dd2[pyr] | ||
|
||
#%% Concatenate all PETHs for Isomap | ||
|
||
if len(ee.columns) > 0: | ||
|
||
tokeep = [] | ||
|
||
for i in range(len(ee.columns)): | ||
a = np.where(ee.iloc[:,i] > 0.5) | ||
if len(a[0]) > 0: | ||
tokeep.append(ee.columns[i]) | ||
PMR.append(ee.iloc[:,i].max()) | ||
res = ee.iloc[:,i].index[a] | ||
uponset.append(res[0]) | ||
|
||
allPETH = pd.concat([allPETH, ee[tokeep]], axis = 1) | ||
|
||
#%% Isomap | ||
|
||
projection = Isomap(n_components = 2, n_neighbors = 50).fit_transform(allPETH.T.values) | ||
H = PMR/(max(PMR)) | ||
|
||
norm_onset = uponset/max(uponset) | ||
cmap = plt.cm.OrRd | ||
|
||
plt.figure(figsize = (8,8)) | ||
plt.scatter(projection[:,0], projection[:,1], c = cmap(H)) | ||
plt.gca().set_box_aspect(1) | ||
plt.xlabel('dim 1') | ||
plt.ylabel('dim 2') | ||
|
||
#%% Specific examples from Isomap | ||
|
||
allPETH.columns = range(allPETH.columns.size) | ||
|
||
summ = {} | ||
summ['peth'] = allPETH | ||
summ['p1'] = projection[:,0] | ||
summ['p2'] = projection[:,1] | ||
|
||
examples = [2, 208, 226, 378, 528, 828, 1018, 1061, 1081] | ||
|
||
for i in examples: | ||
|
||
plt.figure() | ||
plt.title('Example ' + str(i)) | ||
plt.plot(summ['peth'][i]) | ||
plt.axhline(y = 1, linestyle = '--', color = 'k') | ||
plt.xlabel('Time from DU (ms)') | ||
plt.ylabel('Norm. rate') | ||
|
||
#%% Plot of PMR as a function of Isomap dimension 1 | ||
|
||
r, p = pearsonr(projection[:,0], PMR) | ||
|
||
plt.figure() | ||
plt.scatter(projection[:,0], PMR, label = 'r = ' + str(round(r,2))) | ||
plt.gca().set_box_aspect(1) | ||
plt.xlabel('dim 1') | ||
plt.ylabel('PMR') | ||
plt.legend(loc = 'upper right') | ||
|
||
#%% Gradient vector | ||
|
||
pairs = list(combinations(summ['peth'].columns, 2)) | ||
|
||
F_pmrr = [] | ||
|
||
for i,p in enumerate(pairs): | ||
diff_pmrr = PMR[p[0]] - PMR[p[1]] | ||
|
||
dx = summ['p1'][p[0]] - summ['p1'][p[1]] | ||
dy = summ['p2'][p[0]] - summ['p2'][p[1]] | ||
|
||
F_pmrr.append([diff_pmrr/dx, diff_pmrr/dy]) | ||
|
||
mean_pmrr = np.mean(F_pmrr, axis = 0) | ||
|
||
origin = np.array([[0, 0], [0, 0]]) | ||
plt.figure() | ||
plt.title('Gradient vector') | ||
plt.xlim(0, 0.4) | ||
plt.ylim(-0.4, 0) | ||
plt.xlabel('dim 1') | ||
plt.ylabel('dim 2') | ||
plt.quiver(origin[0], origin[1], mean_pmrr[0] , mean_pmrr[1], angles = 'xy', scale_units = 'xy', scale = 1) |
Oops, something went wrong.