Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[New Check]: Check timestamps ascending with nans #480

Merged
merged 13 commits into from
Aug 8, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 4 additions & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
@@ -1,5 +1,9 @@
# Upcoming

### Improvements

* Update util function `is_ascending_series` to discard nan values and add `check_timestamps_without_nans` fun to check if timestamps contain NaN values [#476](https://github.com/NeurodataWithoutBorders/nwbinspector/issues/476)

# v0.4.37

### Fixes
Expand Down
17 changes: 17 additions & 0 deletions docs/best_practices/time_series.rst
Original file line number Diff line number Diff line change
Expand Up @@ -86,6 +86,23 @@ Check function: :py:meth:`~nwbinspector.checks.time_series.check_timestamps_asce



.. _best_practice_timestamps_without_nans:

Timestamps without NaNs
~~~~~~~~~~~~~~~~~~~~~~~

The ``timestamps`` field of a :ref:`nwb-schema:sec-TimeSeries` should not contain ``NaN`` values, as this can lead to
ambiguity in time references and potential issues in downstream analyses.

Ensure that all timestamps are valid numerical values. If gaps in time need to be represented, consider segmenting the
data into separate :ref:`nwb-schema:sec-TimeSeries` objects with appropriate ``starting_time`` or use the ``timestamps``
vector to explicitly represent time gaps.

Check function: :py:meth:`~nwbinspector.checks.time_series.check_timestamps_without_nans`




.. _best_practice_regular_timestamps:

Timestamps vs. Start & Rate
Expand Down
7 changes: 7 additions & 0 deletions src/nwbinspector/checks/time_series.py
Original file line number Diff line number Diff line change
Expand Up @@ -93,6 +93,13 @@ def check_timestamps_ascending(time_series: TimeSeries, nelems=200):
return InspectorMessage(f"{time_series.name} timestamps are not ascending.")


@register_check(importance=Importance.BEST_PRACTICE_VIOLATION, neurodata_type=TimeSeries)
def check_timestamps_without_nans(time_series: TimeSeries, nelems=200):
"""Check if there are NaN values in the timestamps array."""
if time_series.timestamps is not None and np.isnan(time_series.timestamps[:nelems]).any():
return InspectorMessage(message=f"{time_series.name} timestamps contain NaN values.")


@register_check(importance=Importance.BEST_PRACTICE_SUGGESTION, neurodata_type=TimeSeries)
def check_timestamp_of_the_first_sample_is_not_negative(time_series: TimeSeries):
"""
Expand Down
11 changes: 9 additions & 2 deletions src/nwbinspector/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -91,9 +91,16 @@ def is_regular_series(series: np.ndarray, tolerance_decimals: int = 9):
def is_ascending_series(series: Union[h5py.Dataset, ArrayLike], nelems: Optional[int] = None):
"""General purpose function for determining if a series is monotonic increasing."""
if isinstance(series, h5py.Dataset):
differences = np.diff(_cache_data_selection(data=series, selection=slice(nelems)))
data = _cache_data_selection(data=series, selection=slice(nelems))
else:
differences = np.diff(series[:nelems]) # already in memory, no need to cache
data = series[:nelems]

# Remove NaN values from the series
data = np.array(data)
valid_data = data[~np.isnan(data)]

# Compute the differences between consecutive elements
differences = np.diff(valid_data)

return np.all(differences >= 0)

Expand Down
3 changes: 3 additions & 0 deletions tests/test_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,6 +17,8 @@

import pytest

import numpy as np


def test_format_byte_size():
assert format_byte_size(byte_size=12345) == "12.35KB"
Expand Down Expand Up @@ -145,6 +147,7 @@ def test_calculate_number_of_cpu_negative_value(self):
def test_is_ascending_series():
assert is_ascending_series(series=[1, 1, 1])
assert is_ascending_series(series=[1, 2, 3])
assert is_ascending_series(series=[1, np.nan, 3])
assert not is_ascending_series(series=[1, 2, 1])


Expand Down
41 changes: 41 additions & 0 deletions tests/unit_tests/test_time_series.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,6 +12,7 @@
check_data_orientation,
check_timestamps_match_first_dimension,
check_timestamps_ascending,
check_timestamps_without_nans,
check_missing_unit,
check_resolution,
check_timestamp_of_the_first_sample_is_not_negative,
Expand Down Expand Up @@ -227,6 +228,13 @@ def test_pass_check_timestamps_ascending_pass():
assert check_timestamps_ascending(time_series) is None


def test_pass_check_timestamps_ascending_with_nans_pass():
time_series = pynwb.TimeSeries(
name="test_time_series", unit="test_units", data=[1, 2, 3], timestamps=[1, np.nan, 3]
)
assert check_timestamps_ascending(time_series) is None


def test_check_timestamps_ascending_fail():
time_series = pynwb.TimeSeries(name="test_time_series", unit="test_units", data=[1, 2, 3], timestamps=[1, 3, 2])
assert check_timestamps_ascending(time_series) == InspectorMessage(
Expand All @@ -239,6 +247,39 @@ def test_check_timestamps_ascending_fail():
)


def test_check_timestamps_ascending_with_nans_fail():
time_series = pynwb.TimeSeries(
name="test_time_series", unit="test_units", data=[1, 2, 3], timestamps=[np.nan, 3, 2]
)
assert check_timestamps_ascending(time_series) == InspectorMessage(
message="test_time_series timestamps are not ascending.",
importance=Importance.BEST_PRACTICE_VIOLATION,
check_function_name="check_timestamps_ascending",
object_type="TimeSeries",
object_name="test_time_series",
location="/",
)


def test_check_timestamps_without_nans_pass():
time_series = pynwb.TimeSeries(name="test_time_series", unit="test_units", data=[1, 2, 3], timestamps=[1, 2, 3])
assert check_timestamps_without_nans(time_series) is None


def test_check_timestamps_without_nans_fail():
time_series = pynwb.TimeSeries(
name="test_time_series", unit="test_units", data=[1, 2, 3], timestamps=[np.nan, 2, 3]
)
assert check_timestamps_without_nans(time_series) == InspectorMessage(
message="test_time_series timestamps contain NaN values.",
importance=Importance.BEST_PRACTICE_VIOLATION,
check_function_name="check_timestamps_without_nans",
object_type="TimeSeries",
object_name="test_time_series",
location="/",
)


def test_check_timestamp_of_the_first_sample_is_not_negative_with_timestamps_fail():
time_series = pynwb.TimeSeries(name="test_time_series", unit="test_units", data=[1, 2, 3], timestamps=[-1, 0, 1])
message = (
Expand Down
Loading