Skip to content

Commit

Permalink
Merge branch 'kellertuer/general-linear-group' of github.com:JuliaMan…
Browse files Browse the repository at this point in the history
…ifolds/LieGroups.jl into kellertuer/general-linear-group
  • Loading branch information
kellertuer committed Oct 29, 2024
2 parents 08ea126 + 0c7d5db commit ef88470
Show file tree
Hide file tree
Showing 4 changed files with 13 additions and 13 deletions.
2 changes: 1 addition & 1 deletion docs/src/tutorials/transition.md
Original file line number Diff line number Diff line change
Expand Up @@ -35,7 +35,7 @@ The list is alphabetical, but first lists types, then functions
| `exp(G, g, X)` | `exp(`[`base_manifold`](@ref base_manifold(G::LieGroup))`(G), g, X)` | the previous defaults whenever not agreeing with the invariant one can now be accessed on the internal manifold |
| `exp_inv(G, g, X)` | [`exp`](@ref exp(G::LieGroup, g, X, t::Number))`(G, g, X)` | the exponential map invariant to the group operation is the default on Lie groups here |
| `exp_lie(G, X)` | [`exp`](@ref exp(G::LieGroup, e::Identity, X, t::Number))`(G, `[`Identity`](@ref)`(G), X)` | the (matrix) exponential is now the one at the [`Identity`](@ref)`(G)`, since there it agrees with the invariant one |
| `invervse_translate(G, g, h, c)` | [`inv_left_compose`](@ref)`(G, g, h)`, [`inv_right_compose`](@ref)`(G, g, h)` | compute ``g^{-1}∘h`` and ``g∘h^{-1}``, resp. |
| `inverse_translate(G, g, h, c)` | [`inv_left_compose`](@ref)`(G, g, h)`, [`inv_right_compose`](@ref)`(G, g, h)` | compute ``g^{-1}∘h`` and ``g∘h^{-1}``, resp. |
| `inverse_tranlsate_diff(G, g, h, X, LeftForwardAction())` | - | discontinued, use `diff_left_compose(G, inv(G,g), h)` |
| `inverse_tranlsate_diff(G, g, h, X, RightBackwardAction())` | - | discontinued, use `diff_left_compose(G, h, inv(G,g))` |
| `log(G, g, h)` | `log(`[`base_manifold`](@ref base_manifold(G::LieGroup))`(G), g, h)` | you can now access the previous defaults on the internal manifold whenever they do not agree with the invariant one |
Expand Down
4 changes: 2 additions & 2 deletions src/group_operations/multiplication_operation.jl
Original file line number Diff line number Diff line change
Expand Up @@ -10,7 +10,7 @@ abstract type AbstractMultiplicationGroupOperation <: AbstractGroupOperation end
"""
AbstractMultiplicationGroupOperation <: AbstractMultiplicationGroupOperation
A grou poperation that is realised by a matrix multiplication.
A group operation that is realised by a matrix multiplication.
"""
struct MatrixMultiplicationGroupOperation <: AbstractMultiplicationGroupOperation end

Expand Down Expand Up @@ -309,7 +309,7 @@ Base.log(
g,
) where {𝔽} = log(g)

@doc "$(_doc_exp_mult)"
@doc "$(_doc_log_mult)"
function ManifoldsBase.log!(
::LieGroup{𝔽,MatrixMultiplicationGroupOperation},
X,
Expand Down
6 changes: 3 additions & 3 deletions src/groups/general_linear_group.jl
Original file line number Diff line number Diff line change
Expand Up @@ -24,9 +24,9 @@ const GeneralLinearGroup{𝔽,T} = LieGroup{
𝔽,MatrixMultiplicationGroupOperation,Manifolds.InvertibleMatrices{𝔽,T}
}

function GeneralLinearGroup(n::Int...; kwargs...)
Im = Manifolds.InvertibleMatrices(n...; kwargs...)
return GeneralLinearGroup{typeof(Im).parameters[[1, 2]]...}(
function GeneralLinearGroup(n::Int; kwargs...)
Im = Manifolds.InvertibleMatrices(n; kwargs...)
return GeneralLinearGroup{typeof(Im).parameters...}(
Im, MatrixMultiplicationGroupOperation()
)
end
Expand Down
14 changes: 7 additions & 7 deletions src/interface.jl
Original file line number Diff line number Diff line change
Expand Up @@ -399,7 +399,7 @@ _doc_get_coordinates = """
Return the vector of coordinates to the decomposition of `X` with respect to an [`AbstractBasis`](@extref `ManifoldsBase.AbstractBasis`)
of the [`LieAlgebra`](@ref) `𝔤`.
Since all tangent vectors are assumed to be represented in the Lie algebra,
both signatures are equivalend.
both signatures are equivalent.
The operation can be performed in-place of `c`.
By default this function requires [`identity_element`](@ref)`(G)` and calls
Expand Down Expand Up @@ -449,7 +449,7 @@ _doc_hat = """
hat!(G::LieGroup, X, c)
Compute the hat map ``(⋅)^̂ `` that maps a vector of coordinates ``c_i``
with respect to a certain basis to an tangent vector in the Lie algebra
with respect to a certain basis to a tangent vector in the Lie algebra
```math
X = $(_tex(:sum))_{i∈$(_tex(:Cal,"I"))} c_iB_i,
Expand Down Expand Up @@ -602,7 +602,7 @@ end
Check whether `g` is a valid point on the Lie Group `G`.
This falls back to checking whether `g` is a valid point on `G.manifold`,
unless `g` is an [`Identity`](@ref). Then, it is checked whether it is the
idenity element corresponding to `G`.
identity element corresponding to `G`.
"""
ManifoldsBase.is_point(G::LieGroup, g; kwargs...)

Expand Down Expand Up @@ -720,10 +720,10 @@ end
LinearAlgebra.norm(G::LieGroup, g, X) = norm(G.manifold, g, X)

_doc_rand = """
rand(::LieGroup; vector_at=nothing, σ=1.0, kwargs...)
rand(::LieAlgebra; σ=1.0, kwargs...)
rand!(::LieGroup, gX; vector_at=nothing, kwargs...)
rand!(::LieAlgebra, X; σ=1.0, kwargs...)
rand(::LieGroup; vector_at=nothing, σ::Real=1.0, kwargs...)
rand(::LieAlgebra; σ::Real=1.0, kwargs...)
rand!(::LieGroup, gX; vector_at=nothing, σ::Real=1.0, kwargs...)
rand!(::LieAlgebra, X; σ::Real=1.0, kwargs...)
Compute a random point or tangent vector on a Lie group.
Expand Down

0 comments on commit ef88470

Please sign in to comment.