Skip to content

Commit

Permalink
Update docs/src/tutorials/transition.md
Browse files Browse the repository at this point in the history
Co-authored-by: Johannes Terblanche <[email protected]>
  • Loading branch information
kellertuer and Affie authored Oct 28, 2024
1 parent 8b30d9d commit 0c7d5db
Showing 1 changed file with 1 addition and 1 deletion.
2 changes: 1 addition & 1 deletion docs/src/tutorials/transition.md
Original file line number Diff line number Diff line change
Expand Up @@ -35,7 +35,7 @@ The list is alphabetical, but first lists types, then functions
| `exp(G, g, X)` | `exp(`[`base_manifold`](@ref base_manifold(G::LieGroup))`(G), g, X)` | the previous defaults whenever not agreeing with the invariant one can now be accessed on the internal manifold |
| `exp_inv(G, g, X)` | [`exp`](@ref exp(G::LieGroup, g, X, t::Number))`(G, g, X)` | the exponential map invariant to the group operation is the default on Lie groups here |
| `exp_lie(G, X)` | [`exp`](@ref exp(G::LieGroup, e::Identity, X, t::Number))`(G, `[`Identity`](@ref)`(G), X)` | the (matrix) exponential is now the one at the [`Identity`](@ref)`(G)`, since there it agrees with the invariant one |
| `invervse_translate(G, g, h, c)` | [`inv_left_compose`](@ref)`(G, g, h)`, [`inv_right_compose`](@ref)`(G, g, h)` | compute ``g^{-1}∘h`` and ``g∘h^{-1}``, resp. |
| `inverse_translate(G, g, h, c)` | [`inv_left_compose`](@ref)`(G, g, h)`, [`inv_right_compose`](@ref)`(G, g, h)` | compute ``g^{-1}∘h`` and ``g∘h^{-1}``, resp. |
| `inverse_tranlsate_diff(G, g, h, X, LeftForwardAction())` | - | discontinued, use `diff_left_compose(G, inv(G,g), h)` |
| `inverse_tranlsate_diff(G, g, h, X, RightBackwardAction())` | - | discontinued, use `diff_left_compose(G, h, inv(G,g))` |
| `log(G, g, h)` | `log(`[`base_manifold`](@ref base_manifold(G::LieGroup))`(G), g, h)` | you can now access the previous defaults on the internal manifold whenever they do not agree with the invariant one |
Expand Down

0 comments on commit 0c7d5db

Please sign in to comment.