Skip to content

Commit

Permalink
uniform_converge_sum_sq_tails
Browse files Browse the repository at this point in the history
  • Loading branch information
bmtrager committed Dec 2, 2024
1 parent 0467e24 commit 5f42895
Showing 1 changed file with 24 additions and 37 deletions.
61 changes: 24 additions & 37 deletions coq/QLearn/Tsitsiklis.v
Original file line number Diff line number Diff line change
Expand Up @@ -667,48 +667,35 @@ Proof.
destruct H.
rewrite series_seq in H.
apply is_lim_seq_unique in H.
assert (is_finite (Lim_seq (sum_n (fun n0 : nat => (α (S x + n0)%nat x0)²)))).
{
rewrite ex_series_incr_n with (n := S x) in HH.
rewrite <- ex_finite_lim_series in HH.
destruct HH.
apply is_lim_seq_unique in H1.
now rewrite H1.
}
assert (Lim_seq (sum_n (fun k : nat => (α k x0)²)) =
Rbar_plus (sum_n (fun k : nat => (α k x0)²) x)
(Lim_seq (sum_n (fun n0 : nat => (α (S x + n0)%nat x0)²)))).
{
admit.
}
assert (is_finite (Lim_seq (sum_n (fun n0 : nat => (α (S x + n0)%nat x0)²)))).
{
apply bounded_is_finite with (a := 0) (b := x1).
- apply Lim_seq_pos.
intros.
apply sum_n_nneg.
intros.
apply Rle_0_sqr.
- assert (forall n, 0 <= Rsqr (α n x0)).
{
intros.
apply Rle_0_sqr.
}
generalize (@Series_shift_le _ H2 HH); intros.
rewrite <- H.
rewrite ex_series_Lim_seq; trivial.
rewrite ex_series_Lim_seq; trivial.
+ simpl.
assert (Series (fun n0 : nat => (α (S (x + n0)) x0)²) =
Series (fun n0 : nat => ((α ((S x) + n0)%nat) x0)²)).
{
apply Series_ext.
intros.
f_equal.
}
rewrite H4.
apply H3.
+ generalize (ex_series_incr_n (fun n => Rsqr (α n x0)) (S x)); intros.
now rewrite <- H4.
assert (0 <= x)%nat by lia.
generalize (sum_n_m_Series (fun k : nat => (α k x0)²) 0%nat x H2 HH); intros.
unfold Series in H3.
rewrite <- H1.
simpl in H3.
simpl.
unfold sum_n in *.
rewrite H3, H, Rbar_finite_eq.
simpl.
lra.
}
assert (Lim_seq (sum_n (fun n0 : nat => (α (S x + n0)%nat x0)²)) =
Rbar_minus (A x0) (sum_n (fun k : nat => (α k x0)²) x)).
{
unfold A.
rewrite H1.
rewrite <- H2; simpl.
rewrite H2.
rewrite <- H1; simpl.
rewrite Rbar_finite_eq.
lra.
}
Expand All @@ -719,20 +706,20 @@ Proof.
unfold A in H0.
rewrite H, Rabs_minus_sym, Rabs_right in H0; simpl in H0; try lra.
rewrite <- H.
rewrite H1.
rewrite <- H2.
rewrite H2.
rewrite <- H1.
simpl.
ring_simplify.
generalize (Lim_seq_pos (sum_n (fun n0 : nat => (α (S (x + n0)) x0)²))); intros.
rewrite <- H2 in H4.
rewrite <- H1 in H4.
simpl in H4.
apply Rle_ge.
apply H4.
intros.
apply sum_n_nneg.
intros.
apply Rle_0_sqr.
Admitted.
Qed.

Lemma lemma1_alpha_beta_shift (α β w B W : nat -> Ts -> R) (Ca Cb : R)
{F : nat -> SigmaAlgebra Ts}
Expand Down

0 comments on commit 5f42895

Please sign in to comment.