Skip to content

Commit

Permalink
wip
Browse files Browse the repository at this point in the history
  • Loading branch information
bmtrager committed Dec 2, 2024
1 parent 51280fd commit 0467e24
Showing 1 changed file with 28 additions and 3 deletions.
31 changes: 28 additions & 3 deletions coq/QLearn/Tsitsiklis.v
Original file line number Diff line number Diff line change
Expand Up @@ -663,6 +663,7 @@ Proof.
revert ex_ser; apply almost_impl.
apply all_almost; intros ???.
rv_unfold'_in_star.
generalize H; intros HH.
destruct H.
rewrite series_seq in H.
apply is_lim_seq_unique in H.
Expand All @@ -674,9 +675,33 @@ Proof.
}
assert (is_finite (Lim_seq (sum_n (fun n0 : nat => (α (S x + n0)%nat x0)²)))).
{
apply is_finite_Lim_bounded with (m := 0) (M := x1).
intros.
admit.
apply bounded_is_finite with (a := 0) (b := x1).
- apply Lim_seq_pos.
intros.
apply sum_n_nneg.
intros.
apply Rle_0_sqr.
- assert (forall n, 0 <= Rsqr (α n x0)).
{
intros.
apply Rle_0_sqr.
}
generalize (@Series_shift_le _ H2 HH); intros.
rewrite <- H.
rewrite ex_series_Lim_seq; trivial.
rewrite ex_series_Lim_seq; trivial.
+ simpl.
assert (Series (fun n0 : nat => (α (S (x + n0)) x0)²) =
Series (fun n0 : nat => ((α ((S x) + n0)%nat) x0)²)).
{
apply Series_ext.
intros.
f_equal.
}
rewrite H4.
apply H3.
+ generalize (ex_series_incr_n (fun n => Rsqr (α n x0)) (S x)); intros.
now rewrite <- H4.
}
assert (Lim_seq (sum_n (fun n0 : nat => (α (S x + n0)%nat x0)²)) =
Rbar_minus (A x0) (sum_n (fun k : nat => (α k x0)²) x)).
Expand Down

0 comments on commit 0467e24

Please sign in to comment.