Skip to content

Commit

Permalink
is_lim_seq'_uniform_Rbar_is_lim
Browse files Browse the repository at this point in the history
  • Loading branch information
bmtrager committed Dec 5, 2024
1 parent 2547bf2 commit 31cc893
Show file tree
Hide file tree
Showing 2 changed files with 60 additions and 7 deletions.
62 changes: 56 additions & 6 deletions coq/QLearn/Tsitsiklis.v
Original file line number Diff line number Diff line change
Expand Up @@ -1001,6 +1001,13 @@ Definition is_lim_seq'_uniform_almost (u : nat -> Ts -> R) (l : Ts -> R) :=
forall eps : posreal,
eventually (fun n => almostR2 prts Rlt (rvabs (rvminus (u n) l)) (const eps)).

Lemma is_lim_seq'_uniform_is_lim_almost (u : nat -> Ts -> R) (l : Ts -> R) :
is_lim_seq'_uniform_almost u l ->
almost prts (fun x => is_lim_seq (fun n => u n x) (l x)).
Proof.
Admitted.


Lemma uniform_lim_all_almost (u : nat -> Ts -> R) (l : Ts -> R) :
is_lim_seq'_uniform_fun u l ->
is_lim_seq'_uniform_almost u l.
Expand Down Expand Up @@ -1037,12 +1044,55 @@ Proof.
intros.
apply is_lim_seq_spec.
unfold is_lim_seq'.
match_destr.
- intros eps.
admit.

Admitted.

match_case; intros.
- specialize (H eps).
revert H.
apply eventually_impl.
apply all_eventually; intros ??.
specialize (H x).
now rewrite H0 in H.
- pose (eps := / Rmax M 1).
assert (0 < eps).
{
unfold eps.
apply Rinv_0_lt_compat.
generalize (Rmax_r M 1); intros.
lra.
}
generalize (H (mkposreal _ H1)).
apply eventually_impl.
apply all_eventually; intros ??.
specialize (H2 x).
rewrite H0 in H2.
simpl in H2.
eapply Rle_lt_trans; cycle 1.
apply H2.
unfold eps.
unfold Rdiv.
rewrite Rinv_inv, Rmult_1_l.
apply Rmax_l.
- pose (eps := / (- (Rmin M (-1)))).
assert (0 < eps).
{
unfold eps.
apply Rinv_0_lt_compat.
generalize (Rmin_r M (-1)); intros.
lra.
}
generalize (H (mkposreal _ H1)).
apply eventually_impl.
apply all_eventually; intros ??.
specialize (H2 x).
rewrite H0 in H2.
simpl in H2.
eapply Rlt_le_trans.
apply H2.
unfold eps.
unfold Rdiv.
rewrite Rinv_inv.
ring_simplify.
apply Rmin_l.
Qed.

Lemma uniform_converge_sq (α : nat -> Ts -> R) :
(forall (n:nat), almostR2 prts Rle (const 0) (α n)) ->
Expand Down
5 changes: 4 additions & 1 deletion coq/QLearn/jaakkola_vector.v
Original file line number Diff line number Diff line change
Expand Up @@ -7014,7 +7014,10 @@ Proof.
(adapt_alpha : IsAdapted (Rvector_borel_sa (S N)) α F)
(adapt_beta : IsAdapted (Rvector_borel_sa (S N)) β F)
{rvX0 : RandomVariable (F 0%nat) (Rvector_borel_sa (S N)) (X 0%nat)}
{isl2 : forall k i pf, IsLp prts 2 (vecrvnth i pf (XF k))}
{isl2 : forall k i pf, IsLp prts 2 (vecrvnth i pf (XF k))}
(*
{rvXF : IsAdpated (Rvector_borel_sa (S N)) XF (fun k => F (S k))}
*)
{rvXF : forall k, RandomVariable (F (S k)) (Rvector_borel_sa (S N)) (XF k)} :

(**r α and β are almost always non-negative *)
Expand Down

0 comments on commit 31cc893

Please sign in to comment.