Skip to content

Commit

Permalink
is_lim_seq'_uniform_is_lim
Browse files Browse the repository at this point in the history
  • Loading branch information
bmtrager committed Dec 5, 2024
1 parent 3779070 commit 2547bf2
Show file tree
Hide file tree
Showing 2 changed files with 39 additions and 11 deletions.
27 changes: 27 additions & 0 deletions coq/QLearn/Tsitsiklis.v
Original file line number Diff line number Diff line change
Expand Up @@ -984,6 +984,19 @@ Definition is_lim_seq'_uniform_fun {Ts} (u : nat -> Ts -> R) (l : Ts -> R) :=
forall eps : posreal,
eventually (fun n => forall (x:Ts), Rabs (u n x - l x) < eps).

Lemma is_lim_seq'_uniform_is_lim (u : nat -> Ts -> R) (l : Ts -> R) :
is_lim_seq'_uniform_fun u l ->
forall (x : Ts), is_lim_seq (fun n => u n x) (l x).
Proof.
intros.
apply is_lim_seq_spec.
intros eps.
specialize (H eps).
revert H.
apply eventually_impl.
now apply all_eventually; intros ??.
Qed.

Definition is_lim_seq'_uniform_almost (u : nat -> Ts -> R) (l : Ts -> R) :=
forall eps : posreal,
eventually (fun n => almostR2 prts Rlt (rvabs (rvminus (u n) l)) (const eps)).
Expand Down Expand Up @@ -1017,6 +1030,20 @@ Definition is_lim_seq'_uniform_fun_Rbar {Ts} (u : nat -> Ts -> R) (l : Ts -> Rba
| m_infty => u n x < - 1/eps
end).

Lemma is_lim_seq'_uniform_Rbar_is_lim (u : nat -> Ts -> R) (l : Ts -> Rbar) :
is_lim_seq'_uniform_fun_Rbar u l ->
forall (x : Ts), is_lim_seq (fun n => u n x) (l x).
Proof.
intros.
apply is_lim_seq_spec.
unfold is_lim_seq'.
match_destr.
- intros eps.
admit.

Admitted.


Lemma uniform_converge_sq (α : nat -> Ts -> R) :
(forall (n:nat), almostR2 prts Rle (const 0) (α n)) ->
is_lim_seq'_uniform_almost (fun n => rvsqr (α n)) (const 0) ->
Expand Down
23 changes: 12 additions & 11 deletions coq/QLearn/jaakkola_vector.v
Original file line number Diff line number Diff line change
Expand Up @@ -7005,17 +7005,18 @@ Proof.
apply H.
Qed.

Theorem Jaakkola_alpha_beta_unbounded_uniformly_W_alt (W : vector posreal (S N))
(X XF α β : nat -> Ts -> vector R (S N))
{F : nat -> SigmaAlgebra Ts}
(isfilt : IsFiltration F)
(filt_sub : forall k, sa_sub (F k) dom)
(adapt_alpha : IsAdapted (Rvector_borel_sa (S N)) α F)
(adapt_beta : IsAdapted (Rvector_borel_sa (S N)) β F)
{rvX0 : RandomVariable (F 0%nat) (Rvector_borel_sa (S N)) (X 0%nat)}
{isl2 : forall k i pf, IsLp prts 2 (vecrvnth i pf (XF k))}
{rvXF : forall k, RandomVariable (F (S k)) (Rvector_borel_sa (S N)) (XF k)} :

Theorem Jaakkola_alpha_beta_unbounded_uniformly_W_final
(W : vector posreal (S N))
(X XF α β : nat -> Ts -> vector R (S N))
{F : nat -> SigmaAlgebra Ts}
(isfilt : IsFiltration F)
(filt_sub : forall k, sa_sub (F k) dom)
(adapt_alpha : IsAdapted (Rvector_borel_sa (S N)) α F)
(adapt_beta : IsAdapted (Rvector_borel_sa (S N)) β F)
{rvX0 : RandomVariable (F 0%nat) (Rvector_borel_sa (S N)) (X 0%nat)}
{isl2 : forall k i pf, IsLp prts 2 (vecrvnth i pf (XF k))}
{rvXF : forall k, RandomVariable (F (S k)) (Rvector_borel_sa (S N)) (XF k)} :

(**r α and β are almost always non-negative *)
almost prts (fun ω => forall k i pf, 0 <= vector_nth i pf (α k ω)) ->
almost prts (fun ω => forall k i pf, 0 <= vector_nth i pf (β k ω)) ->
Expand Down

0 comments on commit 2547bf2

Please sign in to comment.