Skip to content

Commit

Permalink
Added two more functions.
Browse files Browse the repository at this point in the history
  • Loading branch information
vsht committed Mar 13, 2024
1 parent 5d79de7 commit 91624ee
Show file tree
Hide file tree
Showing 5 changed files with 363 additions and 8 deletions.
6 changes: 6 additions & 0 deletions FeynCalcBookDev/Extra/FeynCalc.html
Original file line number Diff line number Diff line change
Expand Up @@ -910,6 +910,12 @@ <h2 id="loop-integrals">Loop integrals</h2>
- differentiates <a href="../GLI.html">GLI</a>s with respect to a scalar
variable.</li>
<li><a
href="../FCLoopGLILowerDimension.html">FCLoopGLILowerDimension</a>, <a
href="../FCLoopGLIRaiseDimension.html">FCLoopGLIRaiseDimension</a> -
shifts dimensions of <a href="../GLI.html">GLI</a>s to <span
class="math inline">D-2</span> or <span
class="math inline">D+2</span>.</li>
<li><a
href="../FCLoopAddScalingParameter.html">FCLoopAddScalingParameter</a>,
<a href="../FCLoopGLIExpand.html">FCLoopGLIExpand</a> - series expansion
of expressions with <a href="../GLI.html">GLI</a>s with respect to a
Expand Down
3 changes: 2 additions & 1 deletion FeynCalcBookDev/Extra/FrequentlyAskedQuestions.html
Original file line number Diff line number Diff line change
Expand Up @@ -458,7 +458,8 @@ <h3 id="how-can-i-define-a-complex-four-vector">How can I define a
<code>FV[{a,I},mu]</code>. The presence of an explicit <code>I</code>
will make this vector change under <code>ComplexConjugate</code>, such
that</p>
<pre><code>ComplexConjugate[FV[{a,I},mu]]//FCE</code></pre>
<div class="sourceCode" id="cb5"><pre
class="sourceCode mathematica"><code class="sourceCode mathematica"><span id="cb5-1"><a href="#cb5-1" aria-hidden="true" tabindex="-1"></a>ComplexConjugate<span class="op">[</span>FV<span class="op">[{</span><span class="fu">a</span><span class="op">,</span><span class="fu">I</span><span class="op">},</span>mu<span class="op">]]</span><span class="sc">//</span>FCE</span></code></pre></div>
<p>will give you <code>FV[{a,-I},mu]</code>.</p>
<h3
id="i-created-a-custom-model-for-feynarts-using-feynrules.-how-can-i-use-it-for-calculations-with-feyncalc">I
Expand Down
15 changes: 8 additions & 7 deletions FeynCalcBookDev/Extra/Renormalization.html
Original file line number Diff line number Diff line change
Expand Up @@ -284,9 +284,10 @@ <h3 id="feynman-rules">Feynman rules</h3>
<p>Furthermore, before saving the FeynArts model via
<code>WriteFeynArtsOutput</code> we need to set the global variable
<code>FR$Loop</code> to <code>True</code>. For example,</p>
<pre><code>FR$Loop=True;
SetDirectory[FileNameJoin[{$UserBaseDirectory,&quot;Applications&quot;,&quot;FeynCalc&quot;,&quot;FeynArts&quot;,&quot;Models&quot;}]];
WriteFeynArtsOutput[LPhi4,Output-&gt;&quot;Phi4&quot;,CouplingRename-&gt;False];</code></pre>
<div class="sourceCode" id="cb2"><pre
class="sourceCode mathematica"><code class="sourceCode mathematica"><span id="cb2-1"><a href="#cb2-1" aria-hidden="true" tabindex="-1"></a>FR$Loop<span class="ex">=</span><span class="cn">True</span>;</span>
<span id="cb2-2"><a href="#cb2-2" aria-hidden="true" tabindex="-1"></a><span class="fu">SetDirectory</span><span class="op">[</span><span class="fu">FileNameJoin</span><span class="op">[{</span><span class="va">$UserBaseDirectory</span><span class="op">,</span><span class="st">&quot;Applications&quot;</span><span class="op">,</span><span class="st">&quot;FeynCalc&quot;</span><span class="op">,</span><span class="st">&quot;FeynArts&quot;</span><span class="op">,</span><span class="st">&quot;Models&quot;</span><span class="op">}]]</span>;</span>
<span id="cb2-3"><a href="#cb2-3" aria-hidden="true" tabindex="-1"></a>WriteFeynArtsOutput<span class="op">[</span>LPhi4<span class="op">,</span>Output<span class="ot">-&gt;</span><span class="st">&quot;Phi4&quot;</span><span class="op">,</span>CouplingRename<span class="ot">-&gt;</span><span class="cn">False</span><span class="op">]</span>;</span></code></pre></div>
<h3 id="renormalization-schemes">Renormalization schemes</h3>
<p>From the computational point of view, the most convenient scheme is
Modified Minimal Subtraction <span
Expand Down Expand Up @@ -389,11 +390,11 @@ <h5 id="massless-vector-field">Massless vector field</h5>
\end{equation}</span></p>
<p>and the renormalized one reads</p>
<p><span class="math display">\begin{equation}
\Gamma_R^{\mu \nu} (q) = \Gamma^{\mu \nu} (q) + \text{CT}.
\Gamma_R^{\mu \nu} (q) = \Gamma^{\mu \nu} (q) + \;\text{CT}.
\end{equation}</span></p>
<p>For convenience we also introduce</p>
<p><span class="math display">\begin{equation}
\tilde{\Gamma}^{\mu \nu}_R(q) = - \Pi^{\mu \nu} (q) + \text{CT}
\tilde{\Gamma}^{\mu \nu}_R(q) = - \Pi^{\mu \nu} (q) + \;\text{CT}
\end{equation}</span></p>
<p>which corresponds to what one actually calculates when considering
the sum of a bare amplitude and the corresponding counter-term.</p>
Expand Down Expand Up @@ -491,11 +492,11 @@ <h5 id="massive-vector-field-renormalization">Massive vector field
\end{equation}</span></p>
<p>and the renormalized one reads</p>
<p><span class="math display">\begin{equation}
\Gamma_R^{\mu \nu} (q) = \Gamma^{\mu \nu} (q) + \text{CT}
\Gamma_R^{\mu \nu} (q) = \Gamma^{\mu \nu} (q) + \;\text{CT}
\end{equation}</span></p>
<p>For convenience we also introduce</p>
<p><span class="math display">\begin{equation}
\tilde{\Gamma}^{\mu \nu}_R(q) = - \Pi^{\mu \nu} (q) + \text{CT}
\tilde{\Gamma}^{\mu \nu}_R(q) = - \Pi^{\mu \nu} (q) + \;\text{CT}
\end{equation}</span></p>
<p>which corresponds to what one actually calculates when considering
the sum of a bare amplitude and the corresponding counter-term.</p>
Expand Down
152 changes: 152 additions & 0 deletions FeynCalcBookDev/FCLoopGLILowerDimension.html
Original file line number Diff line number Diff line change
@@ -0,0 +1,152 @@
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml" lang="" xml:lang="">
<head>
<meta charset="utf-8" />
<meta name="generator" content="pandoc" />
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes" />
<title>FeynCalc manual (development version)</title>
<style>
code{white-space: pre-wrap;}
span.smallcaps{font-variant: small-caps;}
div.columns{display: flex; gap: min(4vw, 1.5em);}
div.column{flex: auto; overflow-x: auto;}
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
/* The extra [class] is a hack that increases specificity enough to
override a similar rule in reveal.js */
ul.task-list[class]{list-style: none;}
ul.task-list li input[type="checkbox"] {
font-size: inherit;
width: 0.8em;
margin: 0 0.8em 0.2em -1.6em;
vertical-align: middle;
}
/* CSS for syntax highlighting */
pre > code.sourceCode { white-space: pre; position: relative; }
pre > code.sourceCode > span { display: inline-block; line-height: 1.25; }
pre > code.sourceCode > span:empty { height: 1.2em; }
.sourceCode { overflow: visible; }
code.sourceCode > span { color: inherit; text-decoration: inherit; }
div.sourceCode { margin: 1em 0; }
pre.sourceCode { margin: 0; }
@media screen {
div.sourceCode { overflow: auto; }
}
@media print {
pre > code.sourceCode { white-space: pre-wrap; }
pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
}
pre.numberSource code
{ counter-reset: source-line 0; }
pre.numberSource code > span
{ position: relative; left: -4em; counter-increment: source-line; }
pre.numberSource code > span > a:first-child::before
{ content: counter(source-line);
position: relative; left: -1em; text-align: right; vertical-align: baseline;
border: none; display: inline-block;
-webkit-touch-callout: none; -webkit-user-select: none;
-khtml-user-select: none; -moz-user-select: none;
-ms-user-select: none; user-select: none;
padding: 0 4px; width: 4em;
color: #aaaaaa;
}
pre.numberSource { margin-left: 3em; border-left: 1px solid #aaaaaa; padding-left: 4px; }
div.sourceCode
{ }
@media screen {
pre > code.sourceCode > span > a:first-child::before { text-decoration: underline; }
}
code span.al { color: #ff0000; font-weight: bold; } /* Alert */
code span.an { color: #60a0b0; font-weight: bold; font-style: italic; } /* Annotation */
code span.at { color: #7d9029; } /* Attribute */
code span.bn { color: #40a070; } /* BaseN */
code span.bu { color: #008000; } /* BuiltIn */
code span.cf { color: #007020; font-weight: bold; } /* ControlFlow */
code span.ch { color: #4070a0; } /* Char */
code span.cn { color: #880000; } /* Constant */
code span.co { color: #60a0b0; font-style: italic; } /* Comment */
code span.cv { color: #60a0b0; font-weight: bold; font-style: italic; } /* CommentVar */
code span.do { color: #ba2121; font-style: italic; } /* Documentation */
code span.dt { color: #902000; } /* DataType */
code span.dv { color: #40a070; } /* DecVal */
code span.er { color: #ff0000; font-weight: bold; } /* Error */
code span.ex { } /* Extension */
code span.fl { color: #40a070; } /* Float */
code span.fu { color: #06287e; } /* Function */
code span.im { color: #008000; font-weight: bold; } /* Import */
code span.in { color: #60a0b0; font-weight: bold; font-style: italic; } /* Information */
code span.kw { color: #007020; font-weight: bold; } /* Keyword */
code span.op { color: #666666; } /* Operator */
code span.ot { color: #007020; } /* Other */
code span.pp { color: #bc7a00; } /* Preprocessor */
code span.sc { color: #4070a0; } /* SpecialChar */
code span.ss { color: #bb6688; } /* SpecialString */
code span.st { color: #4070a0; } /* String */
code span.va { color: #19177c; } /* Variable */
code span.vs { color: #4070a0; } /* VerbatimString */
code span.wa { color: #60a0b0; font-weight: bold; font-style: italic; } /* Warning */
</style>
<link rel="stylesheet" href="css/feyncalc.css" />
<script defer="" src="js/katex.min.js"></script>
<script>document.addEventListener("DOMContentLoaded", function () {
var mathElements = document.getElementsByClassName("math");
var macros = [];
for (var i = 0; i < mathElements.length; i++) {
var texText = mathElements[i].firstChild;
if (mathElements[i].tagName == "SPAN") {
katex.render(texText.data, mathElements[i], {
displayMode: mathElements[i].classList.contains('display'),
throwOnError: false,
macros: macros,
fleqn: true
});
}}});
</script>
<link rel="stylesheet" href="js/katex.min.css" />

</head>
<body>
<header id="title-block-header">
<h1 class="title">FeynCalc manual (development version)</h1>
</header>
<h2 id="fcloopglilowerdimension">FCLoopGLILowerDimension</h2>
<p><code>FCLoopGLILowerDimension[gli, topo]</code> lowers the dimension
of the given <code>GLI</code> from <code>D</code> to <code>D-2</code>
and expresses it in terms of <code>D</code>-dimensional loop integrals
returned in the output.</p>
<p>The algorithm is based on the code of the function
<code>RaisingDRR</code> from R. Lee’s LiteRed</p>
<h3 id="see-also">See also</h3>
<p><a href="Extra/FeynCalc.html">Overview</a>, <a
href="FCLoopGLIRaiseDimension.html">FCLoopGLIRaiseDimension</a>.</p>
<h3 id="examples">Examples</h3>
<div class="sourceCode" id="cb1"><pre
class="sourceCode mathematica"><code class="sourceCode mathematica"><span id="cb1-1"><a href="#cb1-1" aria-hidden="true" tabindex="-1"></a>topo <span class="ex">=</span> FCTopology<span class="op">[</span></span>
<span id="cb1-2"><a href="#cb1-2" aria-hidden="true" tabindex="-1"></a> topo1<span class="op">,</span> <span class="op">{</span>SFAD<span class="op">[</span>p1<span class="op">],</span> SFAD<span class="op">[</span>p2<span class="op">],</span> SFAD<span class="op">[</span><span class="fu">Q</span> <span class="sc">-</span> p1 <span class="sc">-</span> p2<span class="op">],</span> SFAD<span class="op">[</span><span class="fu">Q</span> <span class="sc">-</span> p2<span class="op">],</span> </span>
<span id="cb1-3"><a href="#cb1-3" aria-hidden="true" tabindex="-1"></a> SFAD<span class="op">[</span><span class="fu">Q</span> <span class="sc">-</span> p1<span class="op">]},</span> <span class="op">{</span>p1<span class="op">,</span> p2<span class="op">},</span> <span class="op">{</span><span class="fu">Q</span><span class="op">},</span> <span class="op">{</span><span class="fu">Hold</span><span class="op">[</span>SPD<span class="op">[</span><span class="fu">Q</span><span class="op">]]</span> <span class="ot">-&gt;</span> qq<span class="op">},</span> <span class="op">{}]</span></span></code></pre></div>
<p><span
class="math display">\text{FCTopology}\left(\text{topo1},\left\{\frac{1}{(\text{p1}^2+i
\eta )},\frac{1}{(\text{p2}^2+i \eta
)},\frac{1}{((-\text{p1}-\text{p2}+Q)^2+i \eta
)},\frac{1}{((Q-\text{p2})^2+i \eta )},\frac{1}{((Q-\text{p1})^2+i \eta
)}\right\},\{\text{p1},\text{p2}\},\{Q\},\{\text{Hold}[\text{SPD}(Q)]\to
\;\text{qq}\},\{\}\right)</span></p>
<div class="sourceCode" id="cb2"><pre
class="sourceCode mathematica"><code class="sourceCode mathematica"><span id="cb2-1"><a href="#cb2-1" aria-hidden="true" tabindex="-1"></a>FCLoopGLILowerDimension<span class="op">[</span>GLI<span class="op">[</span>topo1<span class="op">,</span> <span class="op">{</span><span class="dv">1</span><span class="op">,</span> <span class="dv">1</span><span class="op">,</span> <span class="dv">1</span><span class="op">,</span> <span class="dv">1</span><span class="op">,</span> <span class="dv">1</span><span class="op">}],</span> topo<span class="op">]</span></span></code></pre></div>
<p><span
class="math display">G^{\text{topo1}}(1,1,1,2,2)+G^{\text{topo1}}(1,1,2,1,2)+G^{\text{topo1}}(1,1,2,2,1)+G^{\text{topo1}}(1,2,1,1,2)+G^{\text{topo1}}(1,2,2,1,1)+G^{\text{topo1}}(2,1,1,2,1)+G^{\text{topo1}}(2,1,2,1,1)+G^{\text{topo1}}(2,2,1,1,1)</span></p>
<div class="sourceCode" id="cb3"><pre
class="sourceCode mathematica"><code class="sourceCode mathematica"><span id="cb3-1"><a href="#cb3-1" aria-hidden="true" tabindex="-1"></a>FCLoopGLILowerDimension<span class="op">[</span>GLI<span class="op">[</span>topo1<span class="op">,</span> <span class="op">{</span>n1<span class="op">,</span> n2<span class="op">,</span> n3<span class="op">,</span> <span class="dv">1</span><span class="op">,</span> <span class="dv">1</span><span class="op">}],</span> topo<span class="op">]</span></span></code></pre></div>
<p><span
class="math display">G^{\text{topo1}}(\text{n1},\text{n2},\text{n3},2,2)+\text{n3}
G^{\text{topo1}}(\text{n1},\text{n2},\text{n3}+1,1,2)+\text{n3}
G^{\text{topo1}}(\text{n1},\text{n2},\text{n3}+1,2,1)+\text{n2}
G^{\text{topo1}}(\text{n1},\text{n2}+1,\text{n3},1,2)+\text{n2}
\;\text{n3}
G^{\text{topo1}}(\text{n1},\text{n2}+1,\text{n3}+1,1,1)+\text{n1}
G^{\text{topo1}}(\text{n1}+1,\text{n2},\text{n3},2,1)+\text{n1}
\;\text{n3}
G^{\text{topo1}}(\text{n1}+1,\text{n2},\text{n3}+1,1,1)+\text{n1}
\;\text{n2}
G^{\text{topo1}}(\text{n1}+1,\text{n2}+1,\text{n3},1,1)</span></p>
</body>
</html>
Loading

0 comments on commit 91624ee

Please sign in to comment.