-
Notifications
You must be signed in to change notification settings - Fork 4
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
316 additions
and
5 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,309 @@ | ||
<!DOCTYPE html> | ||
<html xmlns="http://www.w3.org/1999/xhtml" lang="" xml:lang=""> | ||
<head> | ||
<meta charset="utf-8" /> | ||
<meta name="generator" content="pandoc" /> | ||
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes" /> | ||
<title>FeynCalc manual (development version)</title> | ||
<style> | ||
code{white-space: pre-wrap;} | ||
span.smallcaps{font-variant: small-caps;} | ||
div.columns{display: flex; gap: min(4vw, 1.5em);} | ||
div.column{flex: auto; overflow-x: auto;} | ||
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;} | ||
/* The extra [class] is a hack that increases specificity enough to | ||
override a similar rule in reveal.js */ | ||
ul.task-list[class]{list-style: none;} | ||
ul.task-list li input[type="checkbox"] { | ||
font-size: inherit; | ||
width: 0.8em; | ||
margin: 0 0.8em 0.2em -1.6em; | ||
vertical-align: middle; | ||
} | ||
/* CSS for syntax highlighting */ | ||
pre > code.sourceCode { white-space: pre; position: relative; } | ||
pre > code.sourceCode > span { display: inline-block; line-height: 1.25; } | ||
pre > code.sourceCode > span:empty { height: 1.2em; } | ||
.sourceCode { overflow: visible; } | ||
code.sourceCode > span { color: inherit; text-decoration: inherit; } | ||
div.sourceCode { margin: 1em 0; } | ||
pre.sourceCode { margin: 0; } | ||
@media screen { | ||
div.sourceCode { overflow: auto; } | ||
} | ||
@media print { | ||
pre > code.sourceCode { white-space: pre-wrap; } | ||
pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; } | ||
} | ||
pre.numberSource code | ||
{ counter-reset: source-line 0; } | ||
pre.numberSource code > span | ||
{ position: relative; left: -4em; counter-increment: source-line; } | ||
pre.numberSource code > span > a:first-child::before | ||
{ content: counter(source-line); | ||
position: relative; left: -1em; text-align: right; vertical-align: baseline; | ||
border: none; display: inline-block; | ||
-webkit-touch-callout: none; -webkit-user-select: none; | ||
-khtml-user-select: none; -moz-user-select: none; | ||
-ms-user-select: none; user-select: none; | ||
padding: 0 4px; width: 4em; | ||
color: #aaaaaa; | ||
} | ||
pre.numberSource { margin-left: 3em; border-left: 1px solid #aaaaaa; padding-left: 4px; } | ||
div.sourceCode | ||
{ } | ||
@media screen { | ||
pre > code.sourceCode > span > a:first-child::before { text-decoration: underline; } | ||
} | ||
code span.al { color: #ff0000; font-weight: bold; } /* Alert */ | ||
code span.an { color: #60a0b0; font-weight: bold; font-style: italic; } /* Annotation */ | ||
code span.at { color: #7d9029; } /* Attribute */ | ||
code span.bn { color: #40a070; } /* BaseN */ | ||
code span.bu { color: #008000; } /* BuiltIn */ | ||
code span.cf { color: #007020; font-weight: bold; } /* ControlFlow */ | ||
code span.ch { color: #4070a0; } /* Char */ | ||
code span.cn { color: #880000; } /* Constant */ | ||
code span.co { color: #60a0b0; font-style: italic; } /* Comment */ | ||
code span.cv { color: #60a0b0; font-weight: bold; font-style: italic; } /* CommentVar */ | ||
code span.do { color: #ba2121; font-style: italic; } /* Documentation */ | ||
code span.dt { color: #902000; } /* DataType */ | ||
code span.dv { color: #40a070; } /* DecVal */ | ||
code span.er { color: #ff0000; font-weight: bold; } /* Error */ | ||
code span.ex { } /* Extension */ | ||
code span.fl { color: #40a070; } /* Float */ | ||
code span.fu { color: #06287e; } /* Function */ | ||
code span.im { color: #008000; font-weight: bold; } /* Import */ | ||
code span.in { color: #60a0b0; font-weight: bold; font-style: italic; } /* Information */ | ||
code span.kw { color: #007020; font-weight: bold; } /* Keyword */ | ||
code span.op { color: #666666; } /* Operator */ | ||
code span.ot { color: #007020; } /* Other */ | ||
code span.pp { color: #bc7a00; } /* Preprocessor */ | ||
code span.sc { color: #4070a0; } /* SpecialChar */ | ||
code span.ss { color: #bb6688; } /* SpecialString */ | ||
code span.st { color: #4070a0; } /* String */ | ||
code span.va { color: #19177c; } /* Variable */ | ||
code span.vs { color: #4070a0; } /* VerbatimString */ | ||
code span.wa { color: #60a0b0; font-weight: bold; font-style: italic; } /* Warning */ | ||
</style> | ||
<link rel="stylesheet" href="../css/feyncalc.css" /> | ||
<script defer="" src="../js/katex.min.js"></script> | ||
<script>document.addEventListener("DOMContentLoaded", function () { | ||
var mathElements = document.getElementsByClassName("math"); | ||
var macros = []; | ||
for (var i = 0; i < mathElements.length; i++) { | ||
var texText = mathElements[i].firstChild; | ||
if (mathElements[i].tagName == "SPAN") { | ||
katex.render(texText.data, mathElements[i], { | ||
displayMode: mathElements[i].classList.contains('display'), | ||
throwOnError: false, | ||
macros: macros, | ||
fleqn: true | ||
}); | ||
}}}); | ||
</script> | ||
<link rel="stylesheet" href="../js/katex.min.css" /> | ||
|
||
</head> | ||
<body> | ||
<header id="title-block-header"> | ||
<h1 class="title">FeynCalc manual (development version)</h1> | ||
</header> | ||
<h2 id="treatment-of-gamma5-in-d-dimensions">Treatment of gamma5 in D | ||
dimensions</h2> | ||
<h3 id="see-also">See also</h3> | ||
<p><a href="FeynCalc.html">Overview</a>.</p> | ||
<h3 id="nature-of-the-problem">Nature of the problem</h3> | ||
<p>It is a well-known fact (cf. eg. <a | ||
href="https://arxiv.org/pdf/hep-th/0005255">Jegerlehner:2000dz</a>) that | ||
the definition of <span class="math inline">\gamma^5</span> in 4 | ||
dimensions cannot be consistently extended to <span | ||
class="math inline">D</span> dimensions without giving up either the | ||
anticommutativity property</p> | ||
<p><span class="math display">\begin{equation} | ||
\{\gamma^5, \gamma^\mu\} = 0 | ||
\end{equation}</span></p> | ||
<p>or the cyclicity of the Dirac trace, e.g. that</p> | ||
<p><span class="math display">\begin{equation} | ||
\mathrm{Tr}( \gamma^{\mu_1} \ldots \gamma^{\mu_{2n}} \gamma^5 ) = | ||
\mathrm{Tr}( \gamma^{\mu_2} \ldots \gamma^{\mu_{2n}} \gamma^5 | ||
\gamma^{\mu_1} ) = \mathrm{Tr}( \gamma^{\mu_3} \ldots \gamma^{\mu_{2n}} | ||
\gamma^5 \gamma^{\mu_1} \gamma^{\mu_2} ) = \ldots | ||
\end{equation}</span></p> | ||
<p>This explains the existence of multiple prescriptions (called <span | ||
class="math inline">\gamma^5</span>-schemes) that aim at avoiding these | ||
issues and obtaining physical results in the <em>given | ||
calculation</em>.</p> | ||
<p>Indeed, as of now there is no simple solution or cookbook recipe that | ||
can be readily applied to any theory at any loop order in a fully | ||
automatic fashion.</p> | ||
<p>The reason for this is that calculations involving <span | ||
class="math inline">\gamma^5</span> are not limited to the algebraic | ||
manipulations of Dirac matrices. In general, once <span | ||
class="math inline">\gamma^5</span> shows up in <span | ||
class="math inline">D</span>-dimensional amplitudes, there is a high | ||
chance that the final result will violate some of the essential | ||
symmetries, such as generalized Ward identities or Bose symmetry.</p> | ||
<p>Once this happens, symmetries violated due to the chosen <span | ||
class="math inline">\gamma^5</span> scheme must be restored by hand, | ||
e.g. by introducing special finite counterterms. Unfortunately, an | ||
explicit determination of such counterterms for a given model is a | ||
nontrivial task, especially beyond 1-loop. This explains why people | ||
usually try to avoid this situation and would rather opt for figuring | ||
out special tricks that work only for this particular calculation but | ||
manage to preserve the symmetries.</p> | ||
<p>Further discussions on this topic can be found e.g. in</p> | ||
<ul> | ||
<li>chapter D of <a | ||
href="https://arxiv.org/pdf/1809.01830">Blondel:2018mad</a></li> | ||
<li><a | ||
href="https://arxiv.org/pdf/hep-ph/9504315.pdf">Trueman:1995ca</a></li> | ||
<li><a | ||
href="https://arxiv.org/pdf/1912.06823.pdf">Denner:2019vbn</a></li> | ||
<li><a | ||
href="https://arxiv.org/abs/1705.01827">Gnendiger:2017pys</a></li> | ||
<li><a | ||
href="https://arxiv.org/abs/2312.11291">Stockinger:2023ndm</a></li> | ||
</ul> | ||
<h3 id="feyncalc-implementation">FeynCalc implementation</h3> | ||
<p>FeynCalc has built-in support for several <span | ||
class="math inline">\gamma^5</span>-schemes in the sense that it can | ||
manipulate <span class="math inline">D</span>-dimensional algebraic | ||
expressions involving <span class="math inline">\gamma^5</span> in | ||
accordance with the rules provided by the scheme authors.</p> | ||
<p>The nonalgebraic part of a typical <span | ||
class="math inline">\gamma^5</span>-calculation, e.g. checking for | ||
violated symmetries and restoring them is <strong>not handled</strong> | ||
by FeynCalc. This is also not something easy to automatize (due to the | ||
reasons explained above) so that here we expect the user to employ their | ||
understanding of physics and common sense.</p> | ||
<p>The responsibility of FeynCalc is to ensure that algebraic | ||
manipulations of Dirac matrices (including <span | ||
class="math inline">\gamma^5</span>) are consistent within the chosen | ||
scheme. For the purpose of dealing with <span | ||
class="math inline">\gamma^5</span> in <span | ||
class="math inline">D</span> dimensions FeynCalc implements three | ||
different schemes.</p> | ||
<h4 id="ndr">NDR</h4> | ||
<p>The Naive or Conventional Dimensional Regularization (NDR or CDR | ||
respectively) <a | ||
href="https://doi.org/10.1016/0550-3213(79)90333-X">Chanowitz:1979zu</a> | ||
simply <em>assumes</em> that one can define a <span | ||
class="math inline">D</span>-dimensional <span | ||
class="math inline">\gamma^5</span> that anticommutes with any other | ||
Dirac matrix and does not break the cyclicity of the trace. For FeynCalc | ||
this means that in every string of Dirac matrices all <span | ||
class="math inline">\gamma^5</span> can be safely anticommuted to the | ||
right end of the string. In the course of this operation FeynCalc can | ||
always apply <span class="math inline">(\gamma^5)^2 = 1</span>.</p> | ||
<p>Consequently, all Dirac traces with an even number of <span | ||
class="math inline">\gamma^5</span> can be rewritten as traces that | ||
involve only the first four <span | ||
class="math inline">\gamma</span>-matrices and evaluated directly, | ||
e.g.</p> | ||
<p><span class="math display">\begin{equation} | ||
\mathrm{Tr}( \gamma^{\mu_1} \gamma^{\mu_2} \gamma^5 \gamma^{\mu_3} | ||
\ldots \gamma^{\mu_{2n}} \gamma^5 ) = | ||
\mathrm{Tr}( \gamma^{\mu_1} \gamma^{\mu_2} \ldots \gamma^{\mu_{2n}} ) | ||
\end{equation}</span></p> | ||
<p>The problematic cases are <span | ||
class="math inline">\gamma^5</span>-odd traces with an even number of | ||
other Dirac matrices, where the <span | ||
class="math inline">\mathcal{O}(D-4)</span> pieces of the result depend | ||
on the initial position of <span class="math inline">\gamma^5</span> in | ||
the string. Using the anticommutativity property they can be always | ||
rewritten as traces of a string of other Dirac matrices and one <span | ||
class="math inline">\gamma^5</span>. If the number of the other Dirac | ||
matrices is odd, such a trace is put to zero i.e. <span | ||
class="math display">\begin{equation} | ||
\mathrm{Tr}(\gamma^{\mu_1} \ldots \gamma^{\mu_{2n-1}} \gamma^5) = 0, | ||
\quad n \in \mathbb{N} | ||
\end{equation}</span> If the number is even, the trace <span | ||
class="math display">\begin{equation} | ||
\mathrm{Tr}(\gamma^{\mu_1} \ldots \gamma^{\mu_{2n}} \gamma^5) | ||
\end{equation}</span> is returned unevaluated, since FeynCalc does not | ||
know how to calculate it in a consistent way. A user who knows how these | ||
ambiguous objects should be treated in the particular calculation can | ||
still take care of the remaining traces by hand. This ensures that the | ||
output produced by FeynCalc is algebraically consistent to the maximal | ||
extent possible in the NDR scheme without extra assumptions.</p> | ||
<p>In FeynCalc, this scheme the default choice. It can also be | ||
explicitly activated via</p> | ||
<div class="sourceCode" id="cb1"><pre | ||
class="sourceCode mathematica"><code class="sourceCode mathematica"><span id="cb1-1"><a href="#cb1-1" aria-hidden="true" tabindex="-1"></a>FCSetDiracGammaScheme<span class="op">[</span><span class="st">"NDR"</span><span class="op">]</span></span></code></pre></div> | ||
<p>Sometimes <span class="math inline">\gamma^5</span> may show up in | ||
the calculation as an artifact of using a particular set of operators or | ||
projectors even though the results itself is not supposed to be affected | ||
by the <span class="math inline">\gamma^5</span>-problem. For such cases | ||
FeynCalc offers a variety of the NDR scheme, where all traces of the | ||
form <span class="math display">\begin{equation} | ||
\mathrm{Tr}(\gamma^{\mu_1} \ldots \gamma^{\mu_{2n}} \gamma^5) | ||
\end{equation}</span> are simply put to zero. It can be used to | ||
e.g. examine the effects of the chosen scheme on the final result and | ||
can be activated via</p> | ||
<div class="sourceCode" id="cb2"><pre | ||
class="sourceCode mathematica"><code class="sourceCode mathematica"><span id="cb2-1"><a href="#cb2-1" aria-hidden="true" tabindex="-1"></a>FCSetDiracGammaScheme<span class="op">[</span><span class="st">"NDR-Discard"</span><span class="op">]</span></span></code></pre></div> | ||
<h3 id="bmhv">BMHV</h3> | ||
<p>FeynCalc also supports the Breitenlohner-Maison implementation <a | ||
href="https://doi.org/10.1007/BF01609069">Breitenlohner:1977hr</a> of | ||
the t’Hooft-Veltman <a | ||
href="https://doi.org/10.1016/0550-3213(72)90279-9">tHooft:1972tcz</a> | ||
prescription, often abbreviated as BMHV, HVBM, HV or BM scheme. In this | ||
approach <span class="math inline">\gamma^5</span> is treated as a | ||
purely 4-dimensional object, while <span | ||
class="math inline">D</span>-dimensional Dirac matrices and 4-vectors | ||
are decomposed into <span class="math inline">4</span>- and <span | ||
class="math inline">D-4</span>-dimensional components. Following <a | ||
href="https://doi.org/10.1016/0550-3213(90)90223-Z">Buras:1989xd</a> | ||
FeynCalc typesets the former with a bar and the latter with a hat | ||
e.g.</p> | ||
<p><span class="math display">\begin{equation} | ||
\gamma^\mu = \bar{\gamma}^\mu + \hat{\gamma}^\mu, \quad p^\mu = | ||
\bar{p}^\mu + \hat{p}^\mu | ||
\end{equation}</span></p> | ||
<p>The main advantage of the BMHV scheme is that the Dirac algebra | ||
(including traces) can be evaluated without any algebraic ambiguities. | ||
However, calculations involving tensors from three different spaces | ||
(<span class="math inline">D</span>, <span class="math inline">4</span> | ||
and <span class="math inline">D-4</span>) often turn out to be rather | ||
cumbersome, even when using computer codes. Moreover, this prescription | ||
is known to artificially violate Ward identities in chiral theories, | ||
which is something that can be often avoided when using NDR. Within BMHV | ||
FeynCalc can simplify arbitrary strings of Dirac matrices and calculate | ||
arbitrary traces out-of-the-box. The evaluation of <span | ||
class="math inline">\gamma^5</span>-odd Dirac traces is performed using | ||
the West-formula from <a | ||
href="https://doi.org/10.1016/0010-4655(93)90011-Z">West:1991xv</a>. It | ||
is worth noting that <span class="math inline">D-4</span>-dimensional | ||
components of external momenta are not set to zero by default, as it is | ||
conventionally done in the literature. If this is required, the user | ||
should evaluate <code>Momentum[pi,D-4]=0</code> for each relevant | ||
momentum <span class="math inline">p_i</span>. To remove such | ||
assignments one should use <code>FCClearScalarProducts[]</code>.</p> | ||
<p>This scheme is activated by evaluating</p> | ||
<div class="sourceCode" id="cb3"><pre | ||
class="sourceCode mathematica"><code class="sourceCode mathematica"><span id="cb3-1"><a href="#cb3-1" aria-hidden="true" tabindex="-1"></a>FCSetDiracGammaScheme<span class="op">[</span><span class="st">"BMHV"</span><span class="op">]</span></span></code></pre></div> | ||
<h3 id="larins-scheme">Larin’s scheme</h3> | ||
<p>Larin’s scheme <a | ||
href="https://arxiv.org/pdf/hep-ph/9302240.pdf">Larin:1993tq</a> is a | ||
variety of the BMHV scheme that has been extensively used in QCD | ||
calculations involving axial vector currents. The main idea is to | ||
replace the products of <span class="math inline">\gamma^\mu</span> and | ||
<span class="math inline">\gamma^5</span> in a chiral trace as in</p> | ||
<p><span class="math display">\begin{equation} | ||
\gamma^\mu \gamma^5 \to \frac{1}{6} i \varepsilon^{\mu \nu \rho \sigma} | ||
\gamma_\nu \gamma_\rho \gamma_\sigma | ||
\end{equation}</span></p> | ||
<p>and then calculate the resulting trace. Then, all <span | ||
class="math inline">\varepsilon^{\mu \nu \rho \sigma}</span>-tensors | ||
occurring in the amplitude should be evaluated in <span | ||
class="math inline">D</span> dimensions. Together with the correct | ||
counterterm, this prescription is known to give the same result as when | ||
using the full BMHV scheme.</p> | ||
<p>FeynCalc implement the so-called Moch-Vermaseren-Vogt MVV formula | ||
from <a href="https://arxiv.org/pdf/1506.04517.pdf">Moch:2015usa</a> for | ||
calculating <span class="math inline">\gamma^5</span>-traces in this | ||
scheme. The scheme itself is activated by setting</p> | ||
<div class="sourceCode" id="cb4"><pre | ||
class="sourceCode mathematica"><code class="sourceCode mathematica"><span id="cb4-1"><a href="#cb4-1" aria-hidden="true" tabindex="-1"></a>FCSetDiracGammaScheme<span class="op">[</span><span class="st">"Larin"</span><span class="op">]</span></span></code></pre></div> | ||
</body> | ||
</html> |