⚠️ Note: The API is currently under development and is subject to change.
This is a client library for Rainbow Robotics' cobots RB-Series. It is compatible with C++17.
You can find the documentation here.
To build rbpodo
using CMake, just run
mkdir build
cd build
cmake -DCMAKE_BUILD_TYPE=Release ..
make
To install rbpodo
for integrating your program, you just run
sudo make install
In your CMake project, you can include and link rbpodo
find_package(rbpodo REQUIRED)
target_link_libraries(<YOUR TARGET> rbpodo::rbpodo)
rbpodo
is also available as a Python module. You can install it from PyPI via
pip install rbpodo
Or you can build and install Python module from source via
pip install .
You can find examples here.
#include <iostream>
#include "rbpodo/rbpodo.hpp"
using namespace rb;
int main() {
try {
// Make connection
podo::Cobot robot("10.0.2.7");
podo::ResponseCollector rc;
robot.set_operation_mode(rc, podo::OperationMode::Simulation);
robot.set_speed_bar(rc, 0.5);
robot.flush(rc);
// Move robot in joint space
robot.move_j(rc, {100, 0, 0, 0, 0, 0}, 200, 400);
if (robot.wait_for_move_started(rc, 0.1).type() == podo::ReturnType::Success) {
robot.wait_for_move_finished(rc);
}
// If there is any error during above process, throw exception error
rc.error().throw_if_not_empty();
} catch (const std::exception& e) {
std::cerr << e.what() << std::endl;
return 1;
}
return 0;
}
import rbpodo as rb
import numpy as np
ROBOT_IP = "10.0.2.7"
def _main():
try:
robot = rb.Cobot(ROBOT_IP)
rc = rb.ResponseCollector()
robot.set_operation_mode(rc, rb.OperationMode.Simulation)
robot.set_speed_bar(rc, 0.5)
robot.flush(rc)
robot.move_j(rc, np.array([100, 0, 0, 0, 0, 0]), 200, 400)
if robot.wait_for_move_started(rc, 0.1).type() == rb.ReturnType.Success:
robot.wait_for_move_finished(rc)
rc.error().throw_if_not_empty()
except Exception as e:
print(e)
finally:
pass
if __name__ == "__main__":
_main()
blending_value = [0.01, 5.0, 20.0, 50.0]
q = []
for bv in blending_value:
robot.move_jb2_clear(rc)
robot.move_jb2_add(rc, np.array([90, 0, 0, 0, 0, 0]), 100, 100, bv)
robot.move_jb2_add(rc, np.array([0, 0, 0, 0, 0, 0]), 100, 100, bv)
robot.move_jb2_add(rc, np.array([90, 0, 0, 0, 0, 0]), 100, 100, bv)
robot.move_jb2_add(rc, np.array([0, 0, 0, 0, 0, 0]), 100, 100, bv)
robot.move_jb2_add(rc, np.array([90, 0, 0, 0, 0, 0]), 100, 100, bv)
robot.flush(rc)
robot.move_jb2_run(rc)
data = []
if robot.wait_for_move_started(rc, 0.5).type() == rb.ReturnType.Success:
while robot.wait_for_move_finished(rc, 0.).type() == rb.ReturnType.Timeout:
data.append(data_channel.request_data().sdata.jnt_ref)
time.sleep(0.01)
q.append(np.squeeze(np.array(data)[:, 0]))
q = np.vstack([np.hstack((e, np.tile(e[-1], max([e.shape[0] for e in q]) - e.shape[0]))) for e in q])
You can plot q
via plt.plot(np.arange(0, q.shape[1]) * 0.01, np.transpose(q))
⚠️ Note: This is experimental feature. Be careful when you use this.
rt_script()
allows for the direct integration of custom scripts into the real-time control loop executed within the
control box of robotic arm systems. By enabling computation to be carried out locally in the control box, it
significantly reduces communication latency associated with the updating control output to robot arm.
For instance, variables related to the feedback loop—such as joint positions and electrical current measurements—can be
accessed directly in the control box.
The following is the part of example.
robot.eval(rc, "var count = 0");
robot.rt_script_onoff(rc, true);
robot.rt_script(rc, "count += 1");
for ( ... ) {
std::string count_str;
robot.print_variable(rc, "count", count_str);
...
}
robot.eval(rc, "var count = 0");