Skip to content

CSI4101-END/OANet

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

46 Commits
 
 
 
 
 
 

Repository files navigation

OANet

We propose OANet using the attention mechanism to predict database performance so that the relationship between Knob and the workload can also be considered

TRAIN

Run main.py to train the proposed model. The meaning of paser is as follows.

external      : external matrix (TIME, RATE, WAF, SA)
mode          : kind of neural network ('reshape' is a proposed model, 'single'is a single layer neural network)
hidden_size   : hidden size of the model
group_size    : group size of the model
dot           : Whether to use dot-loss or not
lamb          : application rate of dot loss
lr            : learning rate
act_function  : activation function
epochs        : epoch number of train
train         : model goes triain mode
eval          : model goes eval mode
  • Training the model

python main.py --train --mode {reshape or single } --external {external matrix} --dot --lamb {lamb} --hidden_size {hidden size} --group_size {group size} --epochs {epochs} --lr {learning rate}

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%