Skip to content

Latest commit

 

History

History
22 lines (21 loc) · 1017 Bytes

README.md

File metadata and controls

22 lines (21 loc) · 1017 Bytes

OANet

We propose OANet using the attention mechanism to predict database performance so that the relationship between Knob and the workload can also be considered

TRAIN

Run main.py to train the proposed model. The meaning of paser is as follows.

external      : external matrix (TIME, RATE, WAF, SA)
mode          : kind of neural network ('reshape' is a proposed model, 'single'is a single layer neural network)
hidden_size   : hidden size of the model
group_size    : group size of the model
dot           : Whether to use dot-loss or not
lamb          : application rate of dot loss
lr            : learning rate
act_function  : activation function
epochs        : epoch number of train
train         : model goes triain mode
eval          : model goes eval mode
  • Training the model

python main.py --train --mode {reshape or single } --external {external matrix} --dot --lamb {lamb} --hidden_size {hidden size} --group_size {group size} --epochs {epochs} --lr {learning rate}