-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
60 changed files
with
5,641 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,30 @@ | ||
% wrapper for computing which parameters are significantly modulated by | ||
% trial history: | ||
|
||
nboots = 100; | ||
|
||
path_pkgdata = '~/ondrive/analysisDG/PBups_trialhistory/data/packaged_reaction_time_data/'; | ||
files = dir([path_pkgdata, 'sess_rawdata_*.mat']); | ||
filenames = arrayfun(@(x) x.name,files,'UniformOutput',false); | ||
filenames = filenames(~contains(filenames, 'wholeStim')); | ||
|
||
|
||
for i = 1:length(filenames) | ||
load([path_pkgdata, filenames{i}]); | ||
|
||
data = []; | ||
data.pokedR = avgdata.pokedR; | ||
data.gamma = avgdata.gamma; | ||
data.hits = avgdata.hits; | ||
|
||
tic() | ||
boot_rc = bootstrap_psych_fit(data, 'nboots', nboots, 'h_ind', 1, 'pR_ind', 1, 'trial_back', 1); | ||
boot_lc = bootstrap_psych_fit(data, 'nboots', nboots, 'h_ind', 1, 'pR_ind', 0, 'trial_back', 1); | ||
toc() | ||
|
||
for pn = 1:4 | ||
[p,h] = ranksum(boot_rc(:,pn), boot_lc(:,pn)) | ||
end | ||
|
||
end | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,76 @@ | ||
function[boot_prm] = bootstrap_psych_fit(data_master, varargin) | ||
|
||
p = inputParser; | ||
addParameter(p,'h_ind', []); | ||
addParameter(p,'pR_ind', []); | ||
addParameter(p,'trial_back', +1); | ||
% +1 means 1 trial after the conditioned trial | ||
addParameter(p, 'xreg','gamma'); % gamma/ Delta | ||
addParameter(p, 'nboots', 1000); | ||
addParameter(p, 'ax', []); | ||
addParameter(p, 'plot_bootstraps', false) | ||
addParameter(p, 'seed', 1) | ||
parse(p,varargin{:}); | ||
|
||
xreg = p.Results.xreg; | ||
rng(p.Results.seed); | ||
|
||
if ~isempty(p.Results.h_ind) & ~isempty(p.Results.pR_ind) | ||
ids = find(data_master.hits(1:end) == p.Results.h_ind & data_master.pokedR(1:end) == p.Results.pR_ind) + p.Results.trial_back; | ||
ids(ids<1) = []; | ||
ids(ids>length(data_master.(xreg))) = []; | ||
elseif ~isempty(p.Results.h_ind) | ||
ids = find(data_master.hits(1:end) == p.Results.h_ind) + p.Results.trial_back; | ||
ids(ids<1) = []; | ||
ids(ids>length(data_master.(xreg))) = []; | ||
elseif isempty(p.Results.h_ind) & isempty(p.Results.pR_ind) | ||
ids = 1:length(data_master.(xreg)); | ||
end | ||
|
||
pokedR = data_master.pokedR; | ||
x = data_master.(xreg); | ||
ax = p.Results.ax; | ||
|
||
if p.Results.plot_bootstraps | ||
plotfit = true; | ||
plotdata = true; | ||
ploterrorbar = true; | ||
if isempty(ax) | ||
figure(); | ||
ax = gca(); | ||
hold on; | ||
end | ||
else | ||
plotfit = false; | ||
plotdata = false; | ||
ploterrorbar = false; | ||
ax = []; | ||
|
||
end | ||
|
||
% data_master | ||
boot_prm = zeros(p.Results.nboots, 4); | ||
parfor b = 1:p.Results.nboots % resample data | ||
|
||
id_sample = datasample(ids, length(ids)); | ||
data = []; | ||
data.pokedR = pokedR(id_sample); | ||
data.(xreg) = x(id_sample); | ||
prm = pbups_psych_gamma(data, ... | ||
'xreg', p.Results.xreg, ... | ||
'plotfit', plotfit, ... | ||
'plotdata', plotdata,... | ||
'ploterrorbar', ploterrorbar,... | ||
'fitLineColor', [0.8, 0.8, 0.8],... | ||
'axHandle', ax); | ||
drawnow; | ||
|
||
% sens = prm.beta(3); | ||
% bias = prm.beta(4); | ||
% left_lapse = prm.beta(1); | ||
% right_lapse = 1 - prm.beta(1) - prm.beta(2); | ||
|
||
boot_prm(b,:) = prm.beta; | ||
end | ||
|
||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,37 @@ | ||
function[ids] = extract_cond_ids(d, cond) | ||
% this function extracts the ids of the trial for which | ||
% condition cond is satisfied. session boundaries are respected | ||
% d is a structure with following fields: | ||
% d.sessid: vector of session ids corr to each trial | ||
% d.hits: 1 hit 0 err | ||
% d.pokedR: 1 poked right 0 poked L | ||
|
||
|
||
last_trial_ind = find(diff([d.sessid, 1])); | ||
|
||
switch cond | ||
case 'last_trial' | ||
ids = last_trial_ind; | ||
case 'not_last_trial' | ||
ids = setdiff(1:length(d.sessid), last_trial_ind); | ||
case 'corr' | ||
ids = find(d.hits == 1); | ||
case 'err' | ||
ids = find(d.hits == 0); | ||
case 'post_corr' | ||
ids = setdiff(find(d.hits == 1), last_trial_ind)+1; | ||
case 'post_err' | ||
ids = setdiff(find(d.hits == 0), last_trial_ind)+1; | ||
case 'post_right_corr' | ||
ids = setdiff(find(d.hits == 1 & d.pokedR == 1), last_trial_ind)+1; | ||
case 'post_left_corr' | ||
ids = setdiff(find(d.hits == 1 & d.pokedR == 0), last_trial_ind)+1; | ||
case 'post_right_err' | ||
ids = setdiff(find(d.hits == 0 & d.pokedR == 1), last_trial_ind)+1; | ||
case 'post_left_err' | ||
ids = setdiff(find(d.hits == 0 & d.pokedR == 0), last_trial_ind)+1; | ||
|
||
|
||
end | ||
|
||
end |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,60 @@ | ||
function [P varargout] = fit_logistic2(pokedR, xregressor) | ||
|
||
|
||
if size(pokedR) ~= size(xregressor) | ||
error("one choice for each regressor, something is wrong!") | ||
end | ||
x_uniq = unique(xregressor); | ||
|
||
nPokedR = []; | ||
nPokes = []; | ||
|
||
for c = 1:numel(x_uniq) | ||
|
||
idx = x_uniq(c) == xregressor; | ||
|
||
nPokedR(c,1) = sum(pokedR(idx)); | ||
nPokes(c,1) = sum(idx); | ||
end | ||
|
||
% *** bounds *** | ||
lowerbound = [0, -range(xregressor)]; % lapse [0,1], sensitivity [0 5], bias [-40, 40] | ||
upperbound = [20, range(xregressor)]; | ||
% lowerbound = []; | ||
% upperbound = []; | ||
|
||
|
||
% *** initial parameters *** | ||
param0 = [0.5, 0]; % no lapse, mediocre sensitivity, no bias | ||
|
||
warning('off', 'MATLAB:nchoosek:LargeCoefficient') | ||
|
||
% ***************** % | ||
% Fmincon % | ||
% ***************** % | ||
nLL0 = negLogLike_logistic2(param0, nPokes, nPokedR, x_uniq); | ||
if isinf(nLL0) || isnan(nLL0) | ||
error('Failure to evaluate initial values') | ||
end | ||
|
||
[x_fmin, f_fmin, exitflag, output, ~, grad, hessian] = ... | ||
fmincon(@(param) negLogLike_logistic2(param, nPokes, nPokedR, x_uniq), ... | ||
param0, ... | ||
[], [], [], [], ... | ||
lowerbound, upperbound, ... | ||
[], ... | ||
optimset('DiffMinChange', 0.00001, ... | ||
'MaxIter', 1000, ... | ||
'Algorithm', 'interior-point', ... | ||
'Display', 'off') ); | ||
P = struct; | ||
P.sens = x_fmin(1); | ||
P.bias = x_fmin(2); | ||
|
||
% *** vargout *** | ||
varargout{1} = f_fmin; | ||
varargout{2} = exitflag; | ||
varargout{3} = output; | ||
varargout{4} = grad; | ||
varargout{5} = hessian; | ||
end |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,61 @@ | ||
function [P varargout] = fit_logistic3(pokedR, xregressor) | ||
|
||
|
||
if size(pokedR) ~= size(xregressor) | ||
error("one choice for each regressor, something is wrong!") | ||
end | ||
x_uniq = unique(xregressor); | ||
|
||
nPokedR = []; | ||
nPokes = []; | ||
|
||
for c = 1:numel(x_uniq) | ||
|
||
idx = x_uniq(c) == xregressor; | ||
|
||
nPokedR(c,1) = sum(pokedR(idx)); | ||
nPokes(c,1) = sum(idx); | ||
end | ||
|
||
% *** bounds *** | ||
lowerbound = [0, 0, -range(xregressor)]; % lapse [0,1], sensitivity [0 5], bias [-40, 40] | ||
upperbound = [1, 20, range(xregressor)]; | ||
% lowerbound = []; | ||
% upperbound = []; | ||
|
||
|
||
% *** initial parameters *** | ||
param0 = [0.1, 0.5, 0]; % no lapse, mediocre sensitivity, no bias | ||
|
||
warning('off', 'MATLAB:nchoosek:LargeCoefficient') | ||
|
||
% ***************** % | ||
% Fmincon % | ||
% ***************** % | ||
nLL0 = negLogLike_logistic3(param0, nPokes, nPokedR, x_uniq); | ||
if isinf(nLL0) || isnan(nLL0) | ||
error('Failure to evaluate initial values') | ||
end | ||
|
||
[x_fmin, f_fmin, exitflag, output, ~, grad, hessian] = ... | ||
fmincon(@(param) negLogLike_logistic3(param, nPokes, nPokedR, x_uniq), ... | ||
param0, ... | ||
[], [], [], [], ... | ||
lowerbound, upperbound, ... | ||
[], ... | ||
optimset('DiffMinChange', 0.00001, ... | ||
'MaxIter', 1000, ... | ||
'Algorithm', 'interior-point', ... | ||
'Display', 'off') ); | ||
P = struct; | ||
P.lapse = x_fmin(1); | ||
P.sens = x_fmin(2); | ||
P.bias = x_fmin(3); | ||
|
||
% *** vargout *** | ||
varargout{1} = f_fmin; | ||
varargout{2} = exitflag; | ||
varargout{3} = output; | ||
varargout{4} = grad; | ||
varargout{5} = hessian; | ||
end |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,66 @@ | ||
function [P varargout] = fit_logistic4(pokedR, xregressor) | ||
|
||
rng shuffle | ||
if size(pokedR) ~= size(xregressor) | ||
error("one choice for each regressor, something is wrong!") | ||
end | ||
x_uniq = unique(xregressor); | ||
|
||
nPokedR = []; | ||
nPokes = []; | ||
|
||
for c = 1:numel(x_uniq) | ||
|
||
idx = x_uniq(c) == xregressor; | ||
|
||
nPokedR(c,1) = sum(pokedR(idx)); | ||
nPokes(c,1) = sum(idx); | ||
end | ||
|
||
% *** bounds *** | ||
lowerbound = [0, 0, 0.0001*range(xregressor), -range(xregressor)]; % lapse [0,1], sensitivity [0 5], bias [-40, 40] | ||
upperbound = [1.0, 1.0, 100*range(xregressor), range(xregressor)]; | ||
|
||
|
||
function [c,ceq] = boundcon(x) | ||
c(1) = x(1) + x(2) - 1; % gamm0 + gamm1 <= 1 | ||
c(2) = -(x(1) + x(2)); % gamm0 + gamm1 >= 0 | ||
ceq = []; | ||
end | ||
|
||
% *** initial parameters *** | ||
param0 = [0.01, 0.9, 0.01, 0]; % low lapse, mediocre sensitivity, no bias | ||
|
||
warning('off', 'MATLAB:nchoosek:LargeCoefficient') | ||
|
||
% ***************** % | ||
% Fmincon % | ||
% ***************** % | ||
nLL0 = negLogLike_logistic4(param0, nPokes, nPokedR, x_uniq); | ||
if isinf(nLL0) || isnan(nLL0) | ||
error('Failure to evaluate initial values') | ||
end | ||
|
||
[x_fmin, f_fmin, exitflag, output, ~, grad, hessian] = ... | ||
fmincon(@(param) negLogLike_logistic4(param, nPokes, nPokedR, x_uniq), ... | ||
param0, ... | ||
[], [], [], [], ... | ||
lowerbound, upperbound, ... | ||
@boundcon, ... | ||
optimset('DiffMinChange', 1e-12, ... | ||
'MaxIter', 5000, ... | ||
'Algorithm', 'interior-point', ... | ||
'Display', 'off') ); | ||
P = struct; | ||
P.gamma0 = x_fmin(1); | ||
P.gamma1 = x_fmin(2); | ||
P.sens = x_fmin(3); | ||
P.bias = x_fmin(4); | ||
|
||
% *** vargout *** | ||
varargout{1} = f_fmin; | ||
varargout{2} = exitflag; | ||
varargout{3} = output; | ||
varargout{4} = grad; | ||
varargout{5} = hessian; | ||
end |
Oops, something went wrong.