Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Load models from huggingface instead of blob storage #22

Merged
merged 6 commits into from
Jan 5, 2024
Merged
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 2 additions & 1 deletion .github/workflows/publish-to-pypi.yml
Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,6 @@ permissions:

jobs:
deploy:

runs-on: ubuntu-latest
permissions:
id-token: write
Expand All @@ -35,3 +34,5 @@ jobs:
run: python -m build
- name: Publish package
uses: pypa/gh-action-pypi-publish@release/v1
with:
password: ${{ secrets.PYPI_API_TOKEN }}
lsetiawan marked this conversation as resolved.
Show resolved Hide resolved
22 changes: 13 additions & 9 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -31,13 +31,14 @@ Once you have created a new environment, you can install this project for local
development using the following commands:

```
>> pip install -e .'[dev]'
>> pip install -e .'[dev,train]'
>> pre-commit install
>> conda install pandoc
```

Notes:
1) The single quotes around `'[dev]'` may not be required for your operating system.
3) Look at `pyproject.toml` for other optional dependencies, e.g. you can do `pip install -e ."[dev,train,cuda]"` if you want to use CUDA.
2) `pre-commit install` will initialize pre-commit for this local repository, so
that a set of tests will be run prior to completing a local commit. For more
information, see the Python Project Template documentation on
Expand Down Expand Up @@ -69,21 +70,24 @@ az account set --subscription "<your subscription name>"
az configure --defaults workspace=<aml workspace> group=<resource group> location=<location, e.g. westus3>
```

### Uploading data

Example:
```sh
az storage blob upload --account-name <account> --container <container>> --file data/data.jsonl -n data/sweetpea/data.jsonl
```

### Running jobs

Prediction
```sh
az ml job create -f azureml/eval.yml --set display_name="Test prediction job" --web
az ml job create -f azureml/eval.yml --set display_name="Test prediction job" --set environment_variables.HF_TOKEN=<your huggingface token> --web
```

Notes:
- `--name` will set the mlflow run id
- `--display_name` becomes the name in the experiment dashboard
- `--web` argument will pop-up a browser window for tracking the job.
- `--web` argument will pop-up a browser window for tracking the job.
- The `HF_TOKEN` is required for gated repos, which need authentication


### Uploading data

Example:
```sh
az storage blob upload --account-name <account> --container <container>> --file data/data.jsonl -n data/sweetpea/data.jsonl
```
10 changes: 6 additions & 4 deletions azureml/eval.yml
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@ $schema: https://azuremlschemas.azureedge.net/latest/commandJob.schema.json
command: >
python -m autora.doc.pipelines.main eval
${{inputs.data_dir}}/data.jsonl
--model-path ${{inputs.model_dir}}/llama-2-7b-chat-hf
--model-path ${{inputs.model_path}}
--sys-id ${{inputs.sys_id}}
--instruc-id ${{inputs.instruc_id}}
--param temperature=${{inputs.temperature}}
Expand All @@ -13,9 +13,11 @@ inputs:
data_dir:
type: uri_folder
path: azureml://datastores/workspaceblobstore/paths/data/sweetpea/
model_dir:
type: uri_folder
path: azureml://datastores/workspaceblobstore/paths/base_models
# Currently models are loading faster directly from HuggingFace vs Azure Blob Storage
# model_dir:
# type: uri_folder
# path: azureml://datastores/workspaceblobstore/paths/base_models
model_path: meta-llama/Llama-2-7b-chat-hf
temperature: 0.7
top_p: 0.95
top_k: 40
Expand Down
10 changes: 6 additions & 4 deletions azureml/generate.yml
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
$schema: https://azuremlschemas.azureedge.net/latest/commandJob.schema.json
command: >
python -m autora.doc.pipelines.main generate
--model-path ${{inputs.model_dir}}/llama-2-7b-chat-hf
--model-path ${{inputs.model_path}}
--output ./outputs/output.txt
--sys-id ${{inputs.sys_id}}
--instruc-id ${{inputs.instruc_id}}
Expand All @@ -11,9 +11,11 @@ command: >
autora/doc/pipelines/main.py
code: ../src
inputs:
model_dir:
type: uri_folder
path: azureml://datastores/workspaceblobstore/paths/base_models
# Currently models are loading faster directly from HuggingFace vs Azure Blob Storage
# model_dir:
# type: uri_folder
# path: azureml://datastores/workspaceblobstore/paths/base_models
model_path: meta-llama/Llama-2-7b-chat-hf
temperature: 0.7
top_p: 0.95
top_k: 40
Expand Down
1 change: 1 addition & 0 deletions pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -43,6 +43,7 @@ dev = [
"ipython", # Also used in building notebooks into Sphinx
"matplotlib", # Used in sample notebook intro_notebook.ipynb
"ipykernel",
"hf_transfer",
]
train = [
"jsonlines",
Expand Down