Skip to content

Chest Cancer Classification using Chest CT Scan. Using Vgg16 Model.

Notifications You must be signed in to change notification settings

AmadGakkhar/ChestCancerClassification

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

17 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

workflow

ChestCancerClassification

Step 1. Create Project Template

Barebones folder structure using template.py

Step 2. Add requirements.txt and create setup.py

Step 3. Setup Logger in src/ChestCancerClassifier/init.py

Step 4. Setup utils/common.py

Common utility functions.

Step 5. Design Workflow

Design workflow for each stage of the project i.e, Data Ingestion, Training, Validation, Deployment etc.

1. Update config.yaml
2. Update secrets.yaml [Optional]
3. Update params.yaml
4. Update the entity
5. Update the configuration manager in src config
6. Update the components
7. Update the pipeline
8. Update the main.py
9. Update the dvc.yaml

Data Ingestion

1. Update config.yaml

    data_ingestion:
        root_dir : artifacts/data_ingestion
        source_url : https://drive.google.com/file/d/1X1nl4bIAaCAitivNR2l0PT5-8HCz46Yy/view?usp=sharing
        local_data_file : artifacts/data_ingestion/data.zip
        unzip_dir : artifacts/data_ingestion

2. Update secrets.yaml [Optional]

    No Secrets

3. Update params.yaml

    No Params for Data Ingestion

4. Update the entity

    Return type of config file information. Created using dataclass

    @dataclass(frozen=True)
    class DataIngestionConfig:
        root_dir : Path
        source_url : str
        local_data_file : Path
        unzip_dir : Path

5. Update the configuration manager in src/config

    Create ConfigurationManager Class and add get_data_ingestion_config method which returns DataIngestionConfig type object.

6. Update the components

    We will create a DataIngestion Class in a components file which will take DataIngestionConfig type object as argument the methods to perform the following tasks:

        Download Data from the URL
        Extract the Downloaded file to the path in config file.


7. Update the pipeline

    Create a pipeline class for Data Ingestion stage which integrates the complete data ingestion process.

8. Update the main.py

    In the main file, create an object of the class created in 7(Update pipeline) and call its main function. 

9. Update the dvc.yaml

Prepare Base Model

1. Update config.yaml

    prepare_base_model:
        root_dir : artifacts/prepare_base_model
        base_model_path : artifacts/prepare_base_model/base_model.h5
        updated_model_path : artifacts/prepare_base_model/base_model_updated.h5

2. Update secrets.yaml [Optional]

    No Secrets

3. Update params.yaml

    AUGMENTATION: True
    IMAGE_SIZE: [224, 224, 3] # as per VGG 16 model
    BATCH_SIZE: 16
    INCLUDE_TOP: False
    EPOCHS: 1
    CLASSES: 2
    WEIGHTS: imagenet
    LEARNING_RATE: 0.01

4. Update the entity

    Return type of config/param file information for Base Model Preparation. Created using dataclass

    @dataclass(frozen=True)
    class PrepareBaseModelConfig:
        root_dir: Path
        base_model_path: Path
        updated_base_model_path: Path
        params_image_size: list
        params_learning_rate: float
        params_include_top: bool
        params_weights: str
        params_classes: int

5. Update the configuration manager in src/config

    Update ConfigurationManager Class and add get_prepare_base_model_config method which returns PrepareBaseModelConfig type object.

6. Update the components

    We will create a PrepareBaseModel Class in a components file which will take PrepareBaseModelClassConfig type object as argument and have the methods to perform the following tasks:

        Get base model from Keras
        Save the Model
        Updates the Model for Transfer Learning


7. Update the pipeline

    Create a pipeline class for Model Preparation stage which integrates the whole process.

8. Update the main.py

    In the main file, create an object of the class created in 7(Update pipeline) and call its main function. 

9. Update the dvc.yaml

Model Training

1. Update config.yaml

    training:
    root_dir: artifacts/training
    trained_model_path: artifacts/training/model.h5

2. Update secrets.yaml [Optional]

    No Secrets

3. Update params.yaml

    AUGMENTATION: True
    IMAGE_SIZE: [224, 224, 3] # as per VGG 16 model
    BATCH_SIZE: 16
    INCLUDE_TOP: False
    EPOCHS: 1
    CLASSES: 2
    WEIGHTS: imagenet
    LEARNING_RATE: 0.01

4. Update the entity

    Return type of config/param file information for Training. Created using dataclass


    @dataclass(frozen=True)
    class TrainingConfig:
        root_dir: Path
        trained_model_path: Path
        updated_base_model_path: Path
        training_data: Path
        params_epochs: int
        params_batch_size: int
        params_is_augmentation: bool
        params_image_size: list

5. Update the configuration manager in src/config

    Update ConfigurationManager Class and add get_training_config method which returns TrainingConfig type object.

6. Update the components

    We will create a Training Class in a components file which will take TrainingConfig type object as argument and have the methods to perform the following tasks:

        Train Val Split
        Save the Model
        Train the Model etc.


7. Update the pipeline

    Create a pipeline class for Training stage which integrates the whole process.

8. Update the main.py

    In the main file, create an object of the class created in 7(Update pipeline) and call its main function. 

9. Update the dvc.yaml

Model Evaluation

1. Update config.yaml

    No configuration required for evaluation.

2. Update secrets.yaml [Optional]

    No Secrets

3. Update params.yaml

    AUGMENTATION: True
    IMAGE_SIZE: [224, 224, 3] # as per VGG 16 model
    BATCH_SIZE: 16
    INCLUDE_TOP: False
    EPOCHS: 1
    CLASSES: 2
    WEIGHTS: imagenet
    LEARNING_RATE: 0.01

4. Update the entity

    Return type of config/param file information for Evaluation. Created using dataclass


    @dataclass(frozen=True)
    class EvaluationConfig:
        path_of_model: Path
        training_data: Path
        all_params: dict
        mlflow_uri: str
        params_image_size: list
        params_batch_size: int

5. Update the configuration manager in src/config

    Update ConfigurationManager Class and add get_evaluation_config method which returns EvaluationConfig type object.

6. Update the components

    We will create a Evaluation Class in a components file which will take TrainingConfig type object as argument and have the methods to perform the following tasks:

        Evaluate the Model on Evaluation Data
        Save Score in json format
        Log information to MLFlow.

7. Update the pipeline

    Create a pipeline class for Evaluation stage which integrates the whole process.

8. Update the main.py

    In the main file, create an object of the class created in 7(Update pipeline) and call its main function. 

9. Update the dvc.yaml

Set Up MLFlow

cmd
  • mlflow ui

dagshub

dagshub

MLFLOW_TRACKING_URI=
MLFLOW_TRACKING_USERNAME=
MLFLOW_TRACKING_PASSWORD=
python script.py

Run this to export as env variables:

export MLFLOW_TRACKING_URI=

export MLFLOW_TRACKING_USERNAME= 

export MLFLOW_TRACKING_PASSWORD=

MLFlow on AWS Setup [OPTIONAL]

  1. Login to console.

  2. Create IAM User with Administrator access.

  3. Export credentials in your AWS CLI by running aws configure.

  4. Create s3 bucket.

  5. Create EC2 Machine (Ubuntu) and add security groups (5000 port). Select instance -> Goto security -> Select security group -> Edit inbound rules -> Add rules -> Add port number 5000 and select 0.0.0.0/0 -> Save rules

  6. Run the following commands on EC2 Machine

''' bash sudo apt update sudo apt install python3-pip sudo pip3 install pipenv sudo pip3 install virtualenv mkdir mlflow cd mlflow pipenv install mlflow pipenv install awscli pipenv install boto3 pipenv shell aws configure mlflow server -h 0.0.0.0 --default-artifact-root s3://mlflow-bucket-2623

  1. Open public IPv4 DNS to port 5000

  2. Set uri in local terminal and in your code

  3. export ML_FLOW_TRACKING_URI=http://ec2-3-142-248-17.us-east-2.compute.amazonaws.com:5000

  4. update remote_server_uri in your code as well to see the tracking on aws server.

Setting Up DVC

dvc (Data Version Control) is a git like framework for your code pipelines. It helps organize code in sucha a way that on re-execution, only the stages where any changes have been made are run saving time and computation power. To set-up dvc create a dvc.yaml file as shown and now when running the program, use 'dvc repro' command instead of 'python main'.

AWS-CICD-Deployment-with-Github-Actions

1. Login to AWS console.

2. Create IAM user for deployment

#with specific access

1. EC2 access : It is virtual machine

2. ECR: Elastic Container registry to save your docker image in aws


#Description: About the deployment

1. Build docker image of the source code

2. Push your docker image to ECR

3. Launch Your EC2 

4. Pull Your image from ECR in EC2

5. Lauch your docker image in EC2

#Policy:

1. AmazonEC2ContainerRegistryFullAccess

2. AmazonEC2FullAccess

3. Create ECR repo to store/save docker image

- Save the URI: 566373416292.dkr.ecr.us-east-1.amazonaws.com/chicken

4. Create EC2 machine (Ubuntu)

5. Open EC2 and Install docker in EC2 Machine:

#optinal

sudo apt-get update -y

sudo apt-get upgrade

#required

curl -fsSL https://get.docker.com -o get-docker.sh

sudo sh get-docker.sh

sudo usermod -aG docker ubuntu

newgrp docker

6. Configure EC2 as self-hosted runner:

setting>actions>runner>new self hosted runner> choose os> then run command one by one

7. Setup github secrets:

AWS_ACCESS_KEY_ID=

AWS_SECRET_ACCESS_KEY=

AWS_REGION = us-east-1

AWS_ECR_LOGIN_URI = 

ECR_REPOSITORY_NAME = {second part of URI}

Releases

No releases published

Packages

No packages published

Languages